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Abstract. Many current deep learning approaches to action recogni-
tion focus on recognizing concrete (e.g., single actor) actions in trimmed
videos from datasets such as UCF-101 and HMDB-51. However, high-
level semantic analysis of sports videos often requires recognizing more
abstract events or situations involving multiple players with longer time-
scale context. This paper builds upon inflated 3D (I3D) ConvNets for
video action recognition to detect and differentiate six abstract cate-
gories of events in untrimmed videos of soccer games from multiple fixed
cameras: normal play, plus breaks in play due to kick-offs, free kicks,
throw-ins, and goal and corner kicks. Raw video unit classifications by
variants of the basic I3D network are post-processed by two novel and
efficient grouping methods for localizing the boundaries of events. Our
experiments show that the proposed methods can achieve 84.2% weighted
precision for event categories at the level of video units, and boost event
temporal localization mean average precision at 0.5 tIoU (mAP@0.5) to
62.0%.

Keywords: Event classification · Event Localization · I3D.

1 Introduction

Computer vision is fast becoming a powerful tool for sports video analysis. All
kinds of vision-based tasks traditionally performed by the players themselves,
spectators, referees, camera operators, and expert commentators can potentially
be automated or enhanced for a myriad of applications. These include training
and coaching feedback, enhanced rule enforcement accuracy, replay annotation
and explanation for broadcasters, measuring detailed player and team statistics,
and even serving as perception modules for robotic sports participants. While the
exact purpose of the analysis may vary, as well as the sensors employed, there are
certain visual skills such as ball tracking [30, 22], player segmentation [3, 21, 14],
recognition [11], and pose estimation [17], and recognition of formations, plays,
and situations [1, 31, 32, 12] that many sports vision systems have in common.

One of the most basic forms of sports video understanding, at a high level,
is play/break categories classification [38, 7, 28]. That is, can one infer whether
a particular video sequence depicting part of a game is showing actual game



2 C. Song, C. Rasmussen

Cam0 Cam1 Cam2

Fig. 1. Example frames of a corner kick event defined in the rule of soccer games. In
the SVPP dataset, three fixed cameras capture different regions of the field.

play, or is there a break in the action? We follow the event definition introduced
by Giancola, et al. [12] to represent play/breaks in videos of soccer games, who
defined an event as an action that is anchored in a single time instance, defined
within a specific context respecting a specific set of rules. Distinguishing between
these two game states is not trivial, because during breaks the players (as well
as the ball) may still be visible, and still moving. Events like shots, passes, and
fouls that occur in the course of play are understandably popular subjects of
study for game analysis [28, 3, 31]. However, here we investigate break events,
which may be due to a timeout, a foul, halftime, an injury, a ball out of bounds,
or any number of sports-specific events1.

Rather than recognizing events or actions in the long untrimmed video either
from one camera or from a broadcast feed (in this case, a video contains camera
panning and zooming, shot boundaries and subjects and scenes selected of the
action), in this paper we aim to differentiate and localize play and break events
using the Soccer Video and Player Position Dataset (SVPP) [25] which has
two complete soccer games from three fixed cameras, like Fig. 1 shows. This
dataset doesn’t have event categories, we manually annotate them in a frame
level. Therefore, the event segment can be extracted. We first consider the Two-
Stream Inflated 3D ConvNet (I3D) [4] trained on three cameras be the one
worthy for the comparison since it is one of state-of-the-art architectures. The
I3D, which takes several seconds of video context or a sequence of frames in a
fixed length (which we call video unit for differentiating with the event segment),
is able to recognize play and different break categories fairly reliably. Because of
multi-camera, an assistant neural network (AN) is then utilized to combine all
I3D’s predictions on synchronous units from all cameras. We also extend I3D to

1 In particular, we study soccer break event categories as defined in the FIFA rule
book [8]: (1) kick-offs (to start each half or after a goal), (2) free kicks (after a foul),
(3) penalty kicks, (4) throw-ins (touch line out of bounds), (5) goal kicks (end line
out of bounds caused by offensive team), (6) corner kicks (end line out of bounds
caused by defensive team), and (7) dropped balls (all other situations), Detecting
these break event segments in the soccer game video is a difficult task due to the
sparsity within a video, but also they have different duration.



Multi-Camera Temporal Grouping for Play/Break Event Detection 3

our C-I3Ds by integrating observations from multiple cameras, even those not
directly viewing the action, are able to boost performance non-trivially. In C-
I3Ds, each camera corresponds to one I3D with two-stream (RGBs and Optical
Flows). The integration of these I3Ds takes synchronous video units from all
cameras as inputs. Outputs are combined to generate predictions.

Here is an assumption: if a classifier performs well with unit inputs, bound-
aries will be localized easily and efficiently. Unlike recent methods [9, 10, 42] feed
by trained deep features for localizing actions or generating action proposals in
untrimmed videos, we propose two efficient methods to group adjacent video
units for the event localization: probability-based grouping (PBG) and class-
based grouping (CBG). Both grouping methods build upon predicted probabil-
ities and classes by our I3D-based model. They and their combination achieve
promising performance on our testing.

In summary, our contribution are three-fold: (1) We extend the I3D network
to be suitable for the multi-camera case to classify video units. (2) We pro-
pose probability-based and class-based grouping methods to facilitate C-I3Ds
for event localization. (3) The combination of both grouping methods boosts
performance on both classification and localization during testing.

2 Related Work

Deep learning architectures for video classification and action recognition in
videos have also shown great promise recently [16, 33, 34], including LSTM net-
works for human action classification [13] and recognizing pass, shoot, dribble
actions from multi-camera video with player and ball trajectories [31]. Strategies
for fusing optical flow with spatial information have also achieved considerable
success [26, 4, 36, 37], as well as 3D convolutional neural networks which extract
features from the spatial and the temporal domains jointly by performing 3D
convolutions to capture the motion information encoded in multiple adjacent
frames [15]. Based on an Inception module [29], I3D expands 2D filters and
pooling kernels to 3D to make it possible to learn seamless spatio-temporal
features from video and applied on two-stream (RGB and Optical Flow). The
optical flow input may provide some sense of recurrence [4]. The I3D network
trained on optical flows carries optimized, smooth flow information. Experimen-
tally it is valuable to classify actions. After pre-training on the Kinetics dataset
[6], I3D models have reached 80.9% on HMDB-51 and 98.0% on UCF-101 [4, 27,
18] which is the most state-of-the-art method to our best knowledge.

Despite these advances, localizing action boundaries in a long, untrimmed
video is still a difficult problem. Applying temporal sliding window is a typical
scheme after classification [24, 35]. The feature extracted from deep neural net-
works is globally pooled within each window for generating SVM inputs. Yuan
et al. [39] proposed an approach to address the uncertainty of action occurrence
and utilization of information from different scales. Although these works have
shown promising performance in their task, the efficiency is still unresolved.
Many recent methods have examined this problem as analogous to object de-
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tection but in the temporal dimension, they utilize features from deep neural
networks to localize action boundaries, including temporal action proposals [10,
9, 5].

In the work which is similar with ours, Giancola, et al.[12] try to “spot” three
soccer event categories: (goal, card, and substitution). However, they didn’t try
to identify the boundaries of an action within a video, but simply the anchor
time that identifies an event with one-minute resolution.

Some other soccer datasets include ISSIA [19], which contains player, referee,
and ball positions as seen from multiple fixed cameras; and SoccerNet [12]. But,
ISSIA is very short – only 2-minute sequences, and while SoccerNet is huge (764
hours of video), it only contains very sparse yellow/red card, goal, and substi-
tution events at essentially 1-minute label resolution. AZADI [2] has play/break
labels and Soccer 152-A [20] has a number of actions, including those of referees,
coaches, and spectators, but neither of these could be obtained for this work.

3 Dataset and Annotation

The Soccer Video and Player Position Dataset [25] (SVPP) is used in our work.
The portion of the dataset that we use consists of two complete soccer game
videos captured at 30 fps by three fixed cameras whose overlapping fields of
view each roughly cover one-third of the length of the field. These two games are
TromsoIL vs. Anzhi (TvA) and TromsoIL vs. Stromsgodset (TvS ). The original
resolution of each frame in the video is 1280 × 960. The video of the games
are untrimmed, and no broadcast content. 324,284 frames of each camera are
annotated with play occupying about 65.9% and break 34.1%. There are no
instances of penalty kicks or drop balls in the videos, so we remove these two
break categories. Of the break frames, 0.4% are kick-off (only at the beginning
of the game or after the half, as there are no goals), 32.4% free kick, 24.4%
throw-in, 14.7% corner kick, and 28.1% goal kick. And different event categories
have various time duration.

4 Methods

4.1 Classification

I3D, Assistant Neural Network (AN) and C-I3Ds Because deep neural
networks have displayed good ability of generalization [41, 23], we firstly train
one I3D network on units from all cameras. And assign one trained I3D model
to a related camera during testing. It implies that different I3D networks share
weights with each other. Thus, synchronous units from different cameras are
sent to their corresponding I3D networks. Their outputs (confidence scores or
logits) are concatenated to feed into AN, which is, in our work, a fully-connected
network for outputting event classification results by combining confidence scores
from different cameras’ related I3D models.
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Fig. 2. C-I3Ds: the combination for multiple two-stream I3D framework.

However, in the multi-camera case, both machine and human may be error-
prone on pointing out the event when some cameras are unavailable. Training
one I3D network on units from all cameras may result in bad recognition. Like
the right frame showed in Fig. 1, people cannot tell the exact event. Therefore,
deploying several I3D networks for different cameras on training is an alternative
way. Unlike the previous way we used, these I3D networks don’t share weights
with each other. Fig. 2 shows its architecture. Each pair of two-stream I3D net-
works corresponds to a camera. And the output of these separate I3D networks
are combined lately, without applying AN. We call this C-I3Ds. Because syn-
chronous video units have the same categories, we trained these separate I3D
networks jointly and averaged their predictions at both training and testing time.

4.2 Event Boundaries Localization

Fig. 3. The distribution of different break
categories in length on our training set.
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Probability-based grouping (PBG) A temporal sequence of predicted prob-
abilities may indicate the transition from one state to another. Ideally, such
transition would be smooth and precise. But, in videos, classifiers may not al-
ways achieve perfect results due to several reasons such as subjective labelling,
restrictions of the classifier, limited data and etc. Using good classifiers, false
classification on frames/units still commonly exists, and thus makes localization
difficult. To address this problem, we applied a sliding window manner on pre-
dicted probabilities from deep neural networks to not only filter out some errors,
but also can group adjacent segments together. The probability-based grouping
has two steps: actionness scores grouping and break categories assigning. Fig. 4
illustrated the full pipeline of PBG.

We extend the definition of actionness scores in [42] and use it to describe
the probability of a given video unit is a break event. For an unit k, we get its
actionness score by probk,a = 1 − probk,p, where probk,a is the actionness score
and probk,p is the probability of ‘play’ of k. If ∀k ∈ [i, j], probk,a ≥ ta, we will be
able to get a class-agnostic segment Si,j , ta is a threshold of differentiating ‘break’
with ‘play’, and i, j are the boundary of a segment. Based on observations, the
beginning of any break event is usually very similar with play and the beginning
of any play is also very similar with its previous neighbor ‘break’. Therefore, for
each break segment Si,j , we utilize law − 1 units before i. And apply a mean
window Wa with size law and stride st from i − law + 1 to j − law + 1. It will
adjust Si,j to Sp,j given ta. After that, an adjusted segment may overlap or too
close with its neighbor segments. We collect these averaged actionness scores
from m to n and apply another mean window Wsep to determine if separate or
group them. We define lsep be the size of Wsep. lsep also implies the minimum
length (i.e. if the distance between two adjacent segments is less than lsep, we
think they are too close). We densely slide Wsep across [m,n] with stride 1, and
compare every scores with a threshold tma. If the number of consecutive steps
for Wsep is more than lsep and the mean scores are less than tma, then separate
them. It is worth noticing that we shrink the size of Wsep if n− t + 1 < lsep for
outputting n−m + 1 mean scores, where t is the index of the current unit.

For assigning break categories, we average probabilities of all categories for
all units within the refined segment, denoted by Pi′,j′ . Because, for each category
c, the shortest and the longest lengths Gc,short and Gc,long can be obtained from
the training set, we iteratively check and assign the most possible category to
the segment based on the its length li′,j′ , if li′,j′ ≥ Gc,short and li′,j′ ≤ Gc,long.
If no category can satisfy this segment, ‘play’ will be assigned to it.

Class-based Grouping (CBG) The drawback of PBG is, law and lsep might
not be very large because large window size will eliminate some short but true
predictions. Therefore, many false positives are retained. Based on the rule of
professional soccer games, we observed facts that any break category must start
at the end of ‘play’, rather than other break categories, except ‘kickoff’. And, any
break category will usually not takes too short, similar as what we mentioned in
assigning break categories in PBG. So based on these facts, we utilize predicted
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classes to further adjust both boundaries and categories. For each input segment
Si,j (including ‘play’) with length is li,j , its two neighbor segments Sx,i−1 and
Sj+1,y are extracted if li,j < tlen, where tlen is a threshold for indicating small
segments. Then, group Sj+1,y with Si,j and assign its category to Si,j if lx,i−1 <
lj+1,y. Otherwise, combine Sx,i−1 to it. This step is processed iteratively until
all lengths are greater than tlen. After that, if any adjacent segment all belong
to any ‘break’ category (except ‘kickoff’), we merge the short segment with the
adjacent longer one and assign the category to it.

5 Experiment and Analysis

Data Preparation We randomly extract synchronous video units from three
halves’ videos and all cameras to generate the training set. The three halves are:
the 2nd half of TvA and the 1st and 2nd half of TvS. In our work, each video
unit has 64 frames with 1 frame of unit’s stride. Fig. 3 displays the distribution
of length of event segments in different break categories in our training set. We
assign the label of the last frame in an unit to be the category of this video unit.
Due to highly imbalanced number of categories in our dataset, we over-sampled
video units which are break categories. Thus, for each category (include play),
9,000 synchronous video units from 3 cameras are in the training set. Data
augmentation is necessary to improve the ability of generalization of models
because of limited instances of some categories. For each frame, we randomly
cropped with size 1160× 921. Frames in the same video unit are cropped at the
same place, as well as the corresponding optical flows images. These frames are
re-sized to 224× 224 for feeding into I3D and C-I3Ds. We also applied random
right-left flipping, frames and corresponding optical flows images in the same
video unit do have the same flipping direction. For the test set, we use the 1st
half of TvA with unit’s stride 1 frame as well for both the event classification
and boundary detection. There are 81,471 units in our test set.

Implementation Details of Training We train the I3D network in an end-
to-end manner, with units of video frames as the input. The optical flows are
calculated by Dual TV L1 method [40]. The I3D network is trained on randomly
selected units from all cameras. For both I3D and C-I3Ds, we use SGD to learn
parameters. The learning rates are set to 0.01. And dropout of both I3D and
C-I3Ds is 0.5 during training. We make AN have 2 layers of 20 hidden nodes.
We deploy the same I3D models to predict confidence scores on different camera
units. The input of AN is the confidence score from I3D models on synchronous
units. The optimization of AN is launched by Adam optimizer with learning rate
0.0001. The training iterations of both I3D and C-I3Ds are 240K, and they are
all trained from scratch. The batch size is 4 because of the memory issue. AN is
trained for 20K iterations with batch size 64.

Evaluation Metrics For event classification, we calculate Precision for different
event categories (include ‘play’). The Weighted Precision is calculated as well
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Fig. 5. This is the demonstration of our methods’ prediction on the test set. Applying
both PBG and CBG after C-I3Ds, precise event boundaries are localized. We sampled
four images that are the last frames of their corresponding segments in the ground
truth to illustrate some categories are hard to be recognized.

for indicating the overall classification performance. For event localization, we
report mean Average Precision (mAP) and Average Recall (AR) using temporal
Intersection over Union (tIoU) threshold of 0.5. Because none of the ‘kickoff’
units is recognized, it is not included in the analysis of the results.

Classification Table. 1 displays the precision of the different model on testing.
I3D network trained on units from all cameras doesn’t perform really well, even
AN is applied. The C-I3Ds perform better than the I3D with AN on almost all
categories, except ‘free kick’. Without any grouping method, its weighted pre-
cision achieves 78.7%. Units can obtain labels after applying grouping methods
with the C-I3Ds. If both law and lsep are 46, the weighted precision reaches
83.5%. If the CBG is applied with tlen is 125, the weighted precision (80.9%)
is lower than using PBG, but still higher than C-I3Ds’. We also combine PBG
and CBG to adjust predicted categories of units and it achieves relatively good
weighted precision performance (84.2%).

The classification result indicates that different levels of difficulty of these
event categories. This may be caused by limited number of events in our training
set, even though we over-sample frames with this category to make the training
set balance. Moreover, owing to diversities, the ‘free kick’ is also hard to be
differentiated from other categories.

Event Localization We use C-I3Ds as the baseline to evaluate performance on
the localization by making input video units be in the chronological order and
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Table 1. Per-unit (stride 1) classification precision (%)

method play free kick throw-in corner goalkick weighted precision

I3D 88.4 15.8 18.9 51.1 37.6 73.3
I3D+AN 85.4 29.4 31.8 63.4 44.4 74.0

C-I3Ds without grouping 88.7 16.5 50.5 66.8 61.2 78.7
C-I3Ds+PBG(law, lsep = 33) 90.6 17.8 65.5 68.5 72.1 82.2
C-I3Ds+PBG(law, lsep = 46) 91.3 20.3 71.2 72.6 73.8 83.5

C-I3Ds+CBG(tlen = 65) 89.5 29.9 77.5 73.3 73.8 83.2
C-I3Ds+CBG(tlen = 125) 88.7 18.3 77.3 58.5 72.6 80.9

C-I3Ds+both(law, lsep = 33, tlen = 65) 91.0 19.2 76.2 65.0 72.6 82.9
C-I3Ds+both(law, lsep = 33, tlen = 125) 91.2 21.3 76.6 65.0 73.1 83.3
C-I3Ds+both(law, lsep = 46, tlen = 65) 91.3 22.0 79.6 72.6 72.3 84.0
C-I3Ds+both(law, lsep = 46, tlen = 125) 91.6 27.7 75.7 72.6 71.6 84.2

localizing boundaries because of its decent classification performance. Table. 2
and Table. 3 display the precision and the recall on the event localization.

While the C-I3Ds achieves a decent performance on the classification, the
result of event localization is bad. Given tIoU threshold as 0.5, the mAP is less
than 1%, and AR is 14.0%. After applying PBG after C-I3Ds with law and lsep
are 33, the mAP@0.5 and AP@0.5 have reached 33.4% and 41.9%, respectively. If
law and lsep are all 46, the mAP@0.5 is 39.3% and the AR@0.5 is 46.5%. Because
some segments are pretty short in the training set, it appears both window sizes
law and lsep is small to maintain these correct segments as many as possible.

C-I3Ds with CBG performs well, which achieves 41.3% mAP@0.5 when set
tlen to be around the unit size (i.e. 65). Assigning it a larger value for tlen, some
short but true segments will be merged into their neighbors. When tlen is much
larger (e.g. 125), both mAP and AR will be low (30.2% and 25.6%) due to the
incorrect merging. C-I3Ds with PBG achieves higher recalls than CBP (46.5%
vs. 34.9%). The PBG will still leave too many short segments because of its
short window sizes. In these segments, the number of false positives is far more
than true positives’. And, CBG with relatively larger tlen can be applied for
eliminating them. Thus, we test the combination of these two grouping methods
after C-I3Ds. The combination boosts mAP@0.5 up to 62.0% without sacrificing
AR much as Table. 2 and Table. 3 showed. Fig. 5 shows qualitative examples on
testing. The four frames display some correct and incorrect recognition. Besides
‘kickoff’, ‘free kick’ is the most difficult category for recognition, like the first
frame with the number 3237. The corresponding segment of the third frame with
the number 49216 is eliminated by the grouping since C-I3Ds only predicts a few
short segments. ‘goalkick’ is the easiest category to be detected in the testing,
as the rightmost frame shows. From the Fig. 5, although some short segments in
the ground truth are hardly detected by C-I3Ds, the predicted boundary can be
adjusted accurately by applying our grouping methods. Both PBG and CBG are
efficient. Running both after C-I3Ds only spends less than 1 second on testing.

6 Conclusion and Future Work

In this paper, we firstly introduce our construction upon the I3D network to
make it be suitable with multi-camera in the soccer game and apply it to classify
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Table 2. Results for event localization in precision(%) and mAP(%)@0.5 tIoU

method free kick throw-in corner goalkick mAP

C-I3Ds without grouping 0.3 0.0 0.0 1.0 0.3
C-I3Ds+PBG(law, lsep = 33) 5.3 38.5 50.0 44.4 33.4
C-I3Ds+PBG(law, lsep = 46) 9.4 41.7 60.0 56.3 39.3

C-I3Ds+CBG(tlen = 65) 22.2 50.0 50.0 44.4 41.3
C-I3Ds+CBG(tlen = 125) 33.3 0.0 66.7 70.0 30.2

C-I3Ds+both(law, lsep = 33, tlen = 65) 10.0 55.6 50.0 47.1 41.9
C-I3Ds+both(law, lsep = 33, tlen = 125) 20.0 83.3 50.0 53.3 56.7
C-I3Ds+both(law, lsep = 46, tlen = 65) 13.6 62.5 60.0 56.3 48.9
C-I3Ds+both(law, lsep = 46, tlen = 125) 37.5 83.3 60.0 56.3 62.0

Table 3. Results for event localization in recall(%) and AR(%)@0.5 tIoU

method free kick throw-in corner goalkick AR

C-I3Ds without grouping 12.5 0.0 0.0 55.6 14.0
C-I3Ds+PBG(law, lsep = 33) 25.0 27.8 50.0 88.9 41.9
C-I3Ds+PBG(law, lsep = 46) 37.5 27.8 50.0 100.0 46.5

C-I3Ds+CBG(tlen = 65) 25.0 11.1 50.0 88.9 34.9
C-I3Ds+CBG(tlen = 125) 25.0 0.0 33.3 77.8 25.6

C-I3Ds+both(law, lsep = 33, tlen = 65) 25.0 27.8 33.3 88.9 39.5
C-I3Ds+both(law, lsep = 33, tlen = 125) 25.0 27.8 33.3 88.9 39.5
C-I3Ds+both(law, lsep = 46, tlen = 65) 37.5 27.8 50.0 100.0 46.5
C-I3Ds+both(law, lsep = 46, tlen = 125) 37.5 27.8 50.0 100.0 46.5

soccer game event rather than actions from individuals. We also propose PBG
and CBG to localize/adjust event boundaries in the video of the soccer game.
The performance demonstrates the combination of these two grouping methods
can achieve a promising result. In the future, we will test our methods on the
event classification and localization in more general scenarios. And, due to our
grouping methods are not in a learning manner, we are still interested in inferring
event boundaries by machine learning approaches.
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