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Abstract— We describe a system which follows “trails” for
autonomous outdoor robot navigation. Through a combination
of appearance and structural cues derived from stereo omni-
directional color cameras, the algorithm is able to detect and
track rough paths despite widely varying tread material, border
vegetation, and illumination conditions. The approaching trail
region is modeled as a circular arc segment of constant width.
Using likelihood formulations which measure color, brightness,
and/or height contrast between a hypothetical region and flank-
ing areas, the tracker performs a robust randomized search for
the most likely trail region and robot pose relative to it with
no a priori appearance model. The addition of the structural
information, which is derived from a semi-global dense stereo
algorithm with ground-plane fitting, is shown to improve trail
segmentation accuracy and provide an additional layer of safety
beyond solely ladar-based obstacle avoidance. Our system’s
ability to follow a variety of trails is demonstrated through live
runs as well as analysis of offline runs on several long sequences
with diverse appearance and structural characteristics using
ground-truth segmentations.

I. INTRODUCTION

Roughly linear terrain features such as roads, hiking trails,
rivers, powerlines, and pipelines are common in man-made
and natural outdoor environments. Such features can be
navigationally useful to unmanned ground or aerial vehicles
in that they both “show the way” and “smooth the way”.
Finding and keeping to a path by driving along it or flying
above it can simplify an autonomous robot’s perceptual and
motion planning tasks and mitigate hazards which occur in
general cross-country navigation. The relative narrowness
and continuity of such features implies a certain commonality
in the framework of detection, tracking, and control, but each
path type has unique appearance and structural characteristics
worthy of investigation.

In this paper we describe a robotic system (shown in
Figure 1(a)) for following hiking and mountain-biking trails
through varied field and forest terrain. Our system relies upon
color and stereo vision to discriminate the drivable region
ahead. We assume that the trail is everywhere traversable
with a wheeled vehicle, and also that the trail is non-
branching and non-terminating, removing the necessity of
intersection or dead-end detection. In essence, the task is
analogous to “lane keeping” from autonomous road follow-
ing, involving repeated estimation, or tracking, of the gross
shape and appearance attributes of a previously-found trail.
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Fig. 1. (a) Robot in park testing area; (b) View from left omnidirectional
camera in forest trail section (see Section V for explanation of dataset)

The first two DARPA Grand Challenges required vehicles
to follow rough roads, but GPS and ladar were sufficient for
most successful teams [1], [2]. The DARPA Urban Challenge
required more road shape estimation ability, and several
teams detailed approaches using primarily vision [5] and rich
structural information based on a Velodyne ladar [6].

In the DARPA LAGR program robots had stereo vision
instead of ladar and were looking only for open space on
their way to a GPS goal, although in constrained areas this
was often coincident with path following. Along the lines of
[3], a method to learn long-range obstacle appearance from
short-range stereo labels was given in [8]. Among LAGR-
derived work, [9] and [10] stand out for explicitly looking
for path-like corridors of homogeneous color or texture along
the ground. The European ELROB competitions have also
required path-following skills; one robot effectively followed
paths by finding “passages” among scattered trees in ladar
data [11]. An approach to non-parametric trail detection
using color + intensity saliency maps and agents was recently
presented in [12] and extended to tracking in [13].

We reported on an initial version of our omnidirectional
trail-following system in [14]. That paper discussed a strictly
monocular, appearance-based approach to discriminating
and tracking the oncoming trail region in an image se-
quence, coupled with differential motion planning within the
parametrized trail region while taking into account ladar-
detected obstacles. In this paper we introduce an approach
to using stereo-derived scene structure estimates as an ad-
ditional cue at the trail segmentation stage, as well as to
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Fig. 2. Selected trail sections in summer (left camera view): (a) Raw images, (b) CIE-Lab color clusters (see Section III), (c) Reprojected dense stereo
height maps with ladar hits overlaid (see Section IV-A). Brighter is higher, with saturation at a max of 1 m.

complement ladar-based obstacle detection for motion plan-
ning. We have previously reported [15] on a simple technique
to augment appearance information about the likelihoods
of various trail shape estimates with obstacle density in
the image domain (after projecting SICK ladar obstacle
detections).

Here we revisit and update that earlier approach using
dense stereo, computed over the forward-facing part of our
omnidirectional cameras’ fields of view (a sample full image
is shown in Figure 1(b)). The stereo step yields pixel-level
height estimates in vehicle coordinates which are by default
registered to the appearance (aka color) information. Some
examples of scene images and their associated height maps
are shown in Figure 2(a) and (c). Our core hypothesis is that
in scenes with low color contrast between on- and off-trail
regions, height differences due to nearby bushes, rocks, and
trees may help resolve ambiguities. In this paper we offer
evidence that by fusing appearance and structural cues we are
indeed able to achieve more accurate trail segmentations in
many situations and boost overall performance. In addition,
stereo height maps offer more information to the motion
planning module about potential in- and near-trail hazards
which may be missed by the ladar.

In the following sections we briefly review the appearance-
based trail detection and tracking components introduced
described in [14] before describing in detail how trail scene
structure is computed and integrated in the tracking pipeline.
We then present results comparing the system with and
without stereo-derived structural information, give results
from some live runs, and discuss ongoing work and plans
for further improvements.

II. EQUIPMENT

The sensors used for the results in this paper are two
Point Grey Flea2 color cameras and a SICK LMS 291

ladar. Each camera is mounted about 1.15 m off the ground,
pointed straight down and rotated so that the longer axis
of its CCD is oriented in the direction of vehicle travel.
The baseline between them is 0.2 m. The cameras are fitted
with omnidirectional Fujinon FE185C046HA-1 lenses which
provide a field of view (FOV) of 180◦ along the vehicle Z
axis and 145◦ along the X axis. In these experiments the
cameras were set for auto-exposure and auto-white balance.
All images were captured at 640 × 480 and downsampled
as noted for different vision modules. The SICK ladar is
mounted on the robot about 0.5 m off the ground facing
forward with a sweep plane parallel (by default) to the XZ
(i.e., ground) plane. Its FOV is 180◦ and the maximum range
is set to 8 m.

The robot used is a Segway RMP 400, with four-wheel
differential steering. The robot’s primary computer for image
processing, tracking, and motion planning is a Dell Precision
M4500 with an Intel Core i5 520M 2.40 GHz processor and
4 Gb of RAM. For live experiments a second computer (a
Dell Precision M2400 laptop with an Intel Core Duo T9600
2.80 GHz processor and 4 Gb of RAM) was connected in
an onboard LAN to increase performance by handling all
low-level device drivers and associated logging.

III. BACKGROUND

As described in [14], the trail region R immediately in
front of the robot is approximated as a constant-width w
arc of a circle with curvature κ over a fixed arc range
[dmin, dmax]. The position of the robot with respect to the
trail is given by its lateral offset ∆x from the trail centerline
and the difference θ between its heading angle and the
tangent to the trail arc. Concatenating the intrinsic width
and curvature shape variables with the extrinsic offset and
heading error variables, the current trail state X is the 4-
parameter vector (w, κ,∆x, θ). A sample trail region with
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Fig. 3. (a) Robot with candidate trail region and neighboring regions,
ladar hits (grid circles are at 1 m intervals); (b) Candidate trail region, ladar
projected to camera

dmin = 0.5 and dmax = 6.0 is diagrammed in Figure 3(a) in
vehicle coordinates and projected to the left omnidirectional
camera image in Figure 3(b).

Under the assumption that a unique trail is present in each
image, it is segmented in a top-down, maximum likelihood
fashion: multiple candidate regions are hypothesized and
scored using a trail likelihood function L, and the highest-
scoring region is the winner. For efficiency, we currently only
search in the forward half of each omnidirectional image. Be-
cause trail-following entails tracking the trail region over an
image sequence, we use particle filtering [16] to incorporate
a prior p(Xt|Xt−1) on the hypotheses which keeps them
near the predicted location of the trail in the current frame
as derived from the robot’s dynamics. To limit the size of the
search space, absolute limits are also set on w and κ based
on any knowledge of the trail properties, as well as on ∆x
and θ under the assumption that the robot is on or close to
the trail.

In [14], [15] we presented a technique for computing the
color appearance likelihood of a candidate region Lappear(R)
based on the assumption that the trail region has a strong
color and/or intensity contrast with the left and right neigh-
boring regions RL and RR. This method does not assume
that the trail color distribution is known a priori, and thus
works on a wide range of trail types without training, and
during tracking is quite robust to sudden changes in trail
material, ambient illumination, or camera exposure. Briefly,
following [9] we compute a small set of exemplar colors
for each image using k-means clustering in CIE-Lab space
and assign every pixel one of these k labels (this labeling is
illustrated in Figure 2(b)). A label histogram is computed for
each candidate region and its neighbors, and the likelihood is
obtained as a weighted combination of contrast (as measured
by the χ2 distance between the region and its neighbors) and
homogeneity (the entropy of the region color distribution).

IV. INTEGRATING STEREO STRUCTURE

The color/intensity contrast between the trail region and
neighboring regions depends heavily on the trail material
and surrounding terrain and vegetation. While it is sufficient
in many situations, when the contrast becomes too low trail
tracking may become degraded or fail entirely. An additional
cue afforded by stereo cameras which may compensate
in these situations is that of height. Intuitively the trail

region itself is expected to be relatively smooth while off-
trail regions are rougher (i.e., have higher height variance).
Moreover, there is often a measurable contrast between the
mean height of the trail and the mean height of regions
immediately bordering it, whether due to grass, bushes, or
rocks that do not exist in the trail or because a “trough” in
the soil has been formed from the passage of previous hikers
and bikers. This is clearly visible in Figure 2(c) for field 597
and mixed 678, where the height difference between the trail
dirt and neighboring grass is only a few inches.

The essential idea of the structure cue is analogous
to the appearance likelihood discussed above: subject to
shape constraints, look for an image region which has
high height contrast with adjacent regions while exhibiting
interior smoothness. Below we outline how pixel heights are
computed from stereo images and present several variants of
a structure likelihood function Lstructure. For the integrated
results in this paper we set the likelihood of each trail
hypothesis in the particle filter to be a linear combination
of its appearance and structure likelihood with appropriate
weighting.

A. Height map computation

A quality stereo depth map estimation depends first on
accurate calibration. We used the OCamCalib Omnidirec-
tional Camera and Calibration Toolbox for Matlab [17] to
obtain intrinsics for the two cameras. Relative extrinsics
were initially estimated with manual measurements and then
refined with bundle adjustment using levmar [18].

Following a common approach to computing correspon-
dences in omnidirectional imagery [19], [20], [21], we rectify
the relevant portion of each omnidirectional image into a
virtual perspective image such that epipolar lines are image
rows; mask out the robot chassis, sensor mast, and peripheral
pixels which are not imaged or severely distorted due to the
fisheye lens; and then apply a standard pixel correspondence
algorithm. The target region of a sample left camera image
is outlined in Figure 4(a); this corresponds to a horizontal
FOV of approximately 114◦ and a vertical FOV of 91◦. Its
rectification after masking is shown in Figure 4(b).

We experimented with three correspondence methods: the
default block matching function (BM) in OpenCV [22], a
semi-global block matching function (SGBM) [23] which
was recently added to OpenCV, and another approach which
imposes global consistency constraints (UMD) [24]. A vari-
ety of disparity ranges and window sizes were investigated.
Sample disparity maps recovered by BM, SGBM, and UMD
for the scene in Figure 4 are shown below it. The average
running times of the methods on 480× 320 rectified images
were about 0.03 s for BM, 0.2 s for SGBM, and over 5.2 s
for UMD. Judging from many sample image pairs from our
dataset, BM produces somewhat sparse and noisy results,
SGBM a denser and smoother version of BM, and UMD
yields comparable results to SGBM but with more noise.
There seems to be sufficient texture in most scenes for
reasonable depth recovery, but blurring near the edges of the
lens and due to robot motion are sometimes problematic.
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Fig. 4. (a) Sample left camera image of stereo pair with area to be rectified
outlined; (b) Rectified subimage after masking. Bottom row: recovered
disparity maps using methods given in the text.
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Fig. 5. Structure likelihood function. (a) Sample image; (b) Left and right
height snakes overlaid on height map

Considering both quality and time, we chose SGBM for
disparity recovery in our paper.

B. Structure likelihood

Given the disparity map and camera calibration, we can
reproject each pixel to vehicle coordinates. Isolating the
height or Y value of each pixel relative to a nominal ground
plane produces a height map which forms the basis for
structure calculations. Calculated height maps relative to a
ground plane of Y = 0 for a set of sample scenes are shown
in Figure 2(c).

Computing heights relative to a fixed ground plane such as
Y = 0 can be problematic when the the trail ahead slopes.
It is standard to first fit a ground plane to stereo data for
obstacle detection [8], [9], but some of our data makes this
step complicated. In areas with considerable height variation
due to foliage, the ground region often occupies a minority
of the image, breaking common techniques like RANSAC.
Therefore, we have devised a structure likelihood formulation
called height snakes which does not directly rely on a
ground plane fit while still being insensitive to slope. Rather
than comparing region statistics, we directly measure lateral
height differences at the trail region-to-neighbor boundaries
and penalize for excessive distal height differences inside the
trail region.

Specifically, the left and right edges of the trail region
are discretized into n depth intervals along the arc from

[dmin, dmax], indicated by dots in Figure 5(c). A short line
segment orthogonal to the edge at the ith depth interval ex-
tends from a point just inside the trail region to just outside.
Let ∆ylat(RL) and ∆ylat(RR) be the set of absolute inside-
outside height differences over all n intervals along the left
edge (cyan-green dot pairs in Figure 5(c)) and right edge
(cyan-red dot pairs), respectively. Then letting ∆ydist(RL)
and ∆ydist(RR) be the set of absolute height differences
between the points at depth intervals i and i + 1 on the
inside of each edge, we have:

Lstructure(R) =Med(∆ylat(RL))−Med(∆ydist(RL))+

Med(∆ylat(RR))−Med(∆ydist(RR))

where Med(·) is the median over a set of height differences.
Using the median rather than the max ensures that isolated
obstacles or errors in stereo matching do not have excessive
influence.

C. Obstacle detection

Another application of the stereo height maps is in our
motion planning module, discussed in detail in [14]. Cur-
rently only ladar-detected obstacles are used to modify the
default trail centerline-following behavior. However, because
the ladar is unable to “see” obstacles above or below its scan
plane, it has significant blind spots. For example, in Figure
2(c) mixed 2381, there is a steep drop-off on the left side of
the trail that the ladar does not see. Similarly, because of its
mounting height the ladar scan of the bridge railing in forest
4890 shows only the vertical supports and not the horizontal
planks. The prominent rock from mixed in Figure 7 is also
too short for the ladar to see. All of these missed hazards
show up well in the stereo height map. Besides discrete
collision hazards another variable that stereo makes available
to the motion planner is slope, especially side slope which
presents a rollover hazard.

V. EXPERIMENTS

Our main testing area for trail tracking is a network of
combined hiking/mountain-biking trails in a mid-Atlantic
U.S. state park which we will term WCC. The WCC trail
from which this paper’s data is taken is a ∼ 1.7 km long loop
and can be logically broken into three contiguous sections
comprising (1) open, grassy fields; (2) a mixture of dense
bushes and shorter trees, some overhanging; and (3) proper
forest with relatively sparse understory foliage. As shorthand,
we refer to these segments as field (0.6 km), mixed (0.4 km),
and forest (0.7 km), respectively. The entire loop with the
sections marked is shown in Figure 6. Depending on the
season, variations in plant growth can considerably affect
the visual properties of the different trail sections and thus
the difficulty of trail segmentation. Several pairs of images
captured at the same points on the trail in late summer and
in late winter are shown in Figure 7.

A. Summer, offline

For these results, data was collected at WCC from about
1 km of manual driving in a clockwise direction along the



Fig. 6. Aerial image of ∼ 1.7 km WCC trail loop. field segments are
shown in green, mixed in yellow, and forest in red.

trail, starting near the northwest corner, in late summer. All
processing was done offline, enabling comparison of the
different likelihood methods described in preceding sections
without regard for computational cost.

For each trail section of our dataset, we have manually
generated ground-truth polygonal segmentations at regularly-
spaced intervals. Out of about 17,000 total image frames
captured at 10 Hz, we have ground truth for 436, or about
1 in 40. State space trail parameters are extracted from the
trail region image polygons by projecting them to vehicle
coordinates and performing circle fitting and an independent
width fitting procedure. This allows us to monitor tracker
performance for each state variable by directly measuring
the median absolute error in the trail heading, width, lateral
offset, and curvature estimates.

A useful measure of agreement between the tracked trail
region and the ground truth trail region in the image can
be computed using a polygon overlap formula suggested by
[26]: Overlap(R1,R2) = A(R1∩R2)2/(A(R1)A(R2)). To
measure overlap with ground truth the raw image polygon
is not used, but rather a reprojection to the image of the
fitted state space parameters, which tends to result in a
smoother polygon and which can be generated for any
desired [dmin, dmax] range.

We have run numerous experiments varying the “looka-
head” distance dmax from 2 m to 6 m and found little
benefit to a larger value for computing ∆x and w. This
is unsurprising since these are most accurately calculated
nearest to the robot. The accuracy of κ goes up slightly with
larger dmax, but it is θ which sees the most improvement.
The overlap score does not change significantly because the
more distant portion of the trail is a small fraction of its
overall image area.

A summary of results are shown in Table I for the different
trail likelihoods discussed above and the three different
terrain areas of our dataset. Qualitatively, an appearance-only
approach tracks the trail quite well throughout. The width
error for the field is somewhat high, and mostly accounted
for we believe by the k-means clustering often grouping
trail dirt pixels with yellow grass growing beside the trail

Summer

Winter

Fig. 7. Sample matched locations along WCC trail from summer, winter
datasets. First column is from transition from field to mixed; second column
is from middle of mixed

(even for larger k), making the trail look a little wider in the
simplified color space searched by the particle filter. This can
be seen in the color cluster labels of Figure 2(b) for field 597.
The structure-only tracker also does quite well with no color
information, but it sometimes overestimates the trail width
because it sees more free space beside the trail that is not
hazardous. This is seen in Figure 2(c) for mixed 1176.

Combining the appearance and structure likelihoods leads
to an improvement in median overlap scores, and signifi-
cantly fewer episodes of mistracking due to off-trail distrac-
tions. In particular, the tracking problems seen in the field
section due to similar colors near the trail are significantly
mitigated by the structure likelihood locking onto the trail
trough in the height map.

Overlap θ (degs.) ∆x (m) w (m)
field 0.443 3.3 0.05 0.12

Lappear mixed 0.839 3.8 0.05 0.04
forest 0.763 4.5 0.07 0.08

field 0.544 3.4 0.05 0.06
Lstructure mixed 0.700 4.0 0.06 0.13

forest 0.520 8.1 0.10 0.19
Lappear+ field 0.579 2.8 0.05 0.08
Lstructure mixed 0.817 3.5 0.05 0.06

forest 0.693 5.0 0.08 0.14
Lappear [14] field 0.361 2.4 0.07 0.20
dmax = 6 m mixed 0.774 2.9 0.05 0.05
κ not fixed forest 0.671 6.6 0.09 0.10

TABLE I
MEDIAN IMAGE OVERLAP SCORES AND ABSOLUTE ERRORS FOR

DIFFERENT TRAIL STATE VARIABLES, RELATIVE TO GROUND TRUTH

(436 IMAGES TOTAL, dmax = 2 M, FIXED STATE κ = 0)

B. Winter, live

While image overlap and the state parameter errors dis-
cussed above provide a useful picture, the ultimate metric



is how far the robot can travel along different kinds of
trails using the algorithm described. We tested the system
by conducting live runs in late winter at WCC and two
other locations which we will call Campus and Park. Real-
time constraints (our target update rate is 8 Hz) prevented
the simultaneous use of appearance and stereo structure
information given available computing power, so the robot
relied only on color appearance information. The robot speed
was fixed at 0.75 m/s.

The Campus location is a curving, asphalt-paved pathway
about 95 m long and bordered by grass. Significant shadows
from trees were cast on about one-third of the path, as seen
in Figure 8. The robot was able to traverse this path in both
directions several times with no incidents.

The Park location is a gravel path in a county park about
240 m long with a 60 m wooden bridge in the middle
and a transition from full sunlight to full shade near the
bridge. Testing occurred late in the day, and multiple narrow
parallel shadows on the bridge (shown in Figure 8) confused
the algorithm, as it expects to see only one high-contrast
region–the trail. Nonetheless, it tracked several of these
shadows almost all the way across the bridge before being
manually stopped because tracking was disrupted by a tree
shadow. The robot tracked the sunny section of gravel path
on one side of the bridge without incident, and was able to
track the shaded section on the other side several times as
well, although it once mistracked when the camera exposure
changed rapidly as it entered the shady section.

Although the ground was snow-free, at this time of year
color contrast is quite low at WCC due to dormant vegetation
along the field and mixed sections of trail and significant
leaf-fall on the forest section. The seasonal difference in trail
appearance is clear from the example images in Figure 7.

8 autonomous segments (with restarts as necessary) were
run beginning in the middle of the northern field section
and concluding at the end of the forest section. Measuring
from GPS logs, a total of approximately 810 m were traveled
autonomously, or almost half of the entire loop. Certain
large sections were skipped entirely due to off-trail slope
hazards that the robot could not see without stereo, but the
rest was attempted. The three longest autonomous segments
were about 120 m (end of forest), 130 m (end of mixed),
and 310 m (middle of forest). Seven of the eight segments
were manually terminated because the system eventually
mistracked, and one because the robot was about to run into
a fallen branch on the trail that was below the ladar scanning
height (this branch is highlighted in Figure 8). While tracking
performance was definitely less than for the summer data,
it was surprisingly good given the visual conditions, and
the system performed well physically. The robot maintained
control over loose rocks and branches on the trail, through
puddles and mud, and climbed and descended nontrivial
grades with aplomb.

VI. CONCLUSION

This paper has presented a system for robotic following of
hiking- and mountain-biking-type trails using a combination

Campus Park

Park

WCC

Fig. 8. Sample trail segmentations from winter autonomous runs. The
green box in the lower-right image highlights a fallen branch invisible to
the ladar but picked up by stereo (see Figure 9)

Fig. 9. Detail of stereo disparity maps (computed offline) for the last two
images in Figure 8. Clearly visible are the split log on the left and the fallen
branch on the right. Stereo will enable longer, safer autonomous runs.

of visual and ladar cues. The core trail-finder component is
fast and robust across a wide range of illumination conditions
and types of terrain. The addition of structural information
has added a safety margin to the system by reducing the
incidence of mistracking that may pose a danger to the robot.



The height contrast cue is a powerful one that is useful in
low appearance contrast sections of trail, complementing the
system’s existing functionality. More optimization work such
as multi-threading is necessary to allow the dense stereo
to comfortably run in real time alongside the appearance-
based tracker, but by reducing the area of the image over
which correspondences are computed (as with the windowed
versions of the disparity images shown in Figure 9), the
system is nearly capable of this already.

Using a fixed linear combination of appearance and
structure information is not ideal, as the relative value of
each cue varies with terrain. An adaptive approach would
allow the system to favor one cue or the other based on
which is more “confident” in its solutions. As described in
[14], we currently use an adaptive method to govern the
relative weight of intensity vs. chromaticity in the appearance
likelihood with a discrete variable in the particle filter state
denoting which characteristic to histogram over. This has
yielded better tracking performance than relying on either
cue alone, and we hope to do something similar by mixing
structure particles with appearance particles in the future.
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