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ABSTRACT

We present a technique for constructing a “clean” texture map of
a partially occluded building facade from a series of images taken
from a moving camera. Building regions blocked by trees, signs,
people, and other foreground objects in a minority of views can
be recovered via temporal median filtering on a registered image
mosaic of the planar facade. However, when such areas are oc-
cluded in the majority of camera views, appearance information
from other visible portions of the facade provides a critical cue to
correctly complete the mosaic. In this paper we apply a robust
measure of spread to infer whether a particular mosaic pixel is oc-
cluded in a majority of views, and introduce a novel spatiotemporal
timeline-based inpainting algorithm that uses an additional motion
cue in order to fill the texture map in majority-occluded regions.

1. INTRODUCTION

As part of a vision-based architectural modeling project (see [1, 2]
for related work by others), we want to capture the visual appear-
ance of buildings via robot-based “scanning.” Given a polyhedral
model of a building’s structure, a major subgoal of the task is to ob-
tain a high-fidelity texture map or elevation of each planar section
of its facade. There are numerous issues related to motion plan-
ning and exploiting positional sensors for this problem, but here
we focus only on some of the key computer vision and image pro-
cessing issues that arise. Given a sequence of overlapping images
of a single large plane of a building wall that have been taken with
a general goal of good coverage, we aim to reconstruct an accurate
map of that section of the facade.

Creating a planar mosaic via homography estimation has been
thoroughly studied [3, 4, 5]. The complicating factor that moti-
vates this paper is the possible presence of other, unknown ob-
jects in the scene between the camera and building plane—e.g.,
trees, people, signs, poles, and other clutter of urban environments.
Without explicitly recognizing them, these objects may be erro-
neously included in the building appearance model. Assuming
that the building plane accounts for the majority of pixels in the
sequence, with robust methods we can estimate the dominant mo-
tion of the building and stabilize it against the camera motion. This
converts the problem of “occluder removal” to a background sub-
traction problem—or rather its corollaries foreground subtraction
[6, 7, 8] and layer extraction [9, 10, 11, 12]. Many of these ap-
proaches either assume that the moving objects are relatively small
compared to the background, facilitating temporal median filtering
[6, 7], or that the objects to be removed are manually identified
once [13, 8] in order to segment them later.

Image/video inpainting [14, 15, 16, 17], a method for image
restoration or object removal, offers a way to remove larger fore-
ground elements. Typically, the region to be filled is user-specified,
but in this work automatically-identified occluded regions serve as
the areas to be filled. This is strictly necessary only where the
background is never seen for the entire sequence, but our chief in-
novation is using regions visible in at least one view to constrain
what should be painted there. By combining spatial information
from pixels in a partially-completed mosaic with the temporal cues
provided by images in the timeline, or sequence of images cap-
tured, sequences that present significant difficulties for temporal
median filtering can be well-handled. In the sections that follow,
we will detail our techniques for image registration, estimation of
foreground likelihoods over the timeline, and integration of this
information into a spatiotemporal inpainting algorithm built upon
the non-parametric method described by Criminisi et al. in [15].

2. METHODS

2.1. Image registration

We begin by computing the dominant planar motion (assumed to
belong to the building facade) between successive pairs of images
It, It+1 in a sequence of N frames. These initial frame-to-frame
homographies H∗

t,t+1 are computed by matching KLT features
[18] in both frames followed by RANSAC for outlier rejection
[19] . Taking frame number ref = �N

2
� of the sequence as the

mosaic reference frame, the homographies are then concatenated
together to align each frame with the mosaic—i.e., H∗

ref ,ref is the
identity; for t < ref , H∗

t,ref = H∗
ref−1,ref · · ·H∗

t+1,t+2H
∗
t,t+1;

and similarly for t > ref . Warping each frame It by H∗
t,ref with

bilinear interpolation results in a mosaic-aligned frame W∗
t .

Computing frame-to-mosaic homographies this way worsens
misalignment errors for frames distant from the reference. With
additional constraints on frame alignments (e.g., that the first and
last or other temporally distant image pairs overlap), global con-
sistency methods [20] or other forms of bundle adjustment may
mitigate such errors. Currently, we assume a 1-D scanning motion
around the building perimeter and thus cannot take advantage of
these methods. Thus, we minimize alignment errors by refining
the initial feature-based homographies with a robust direct method
that iteratively minimizes the sum of squared differences (SSD)
between frames [21, 22]. This procedure operates sequentially on
adjacent pairs of warped images W∗

i ,W∗
j starting from W∗

ref and
working outward. After concatenating these refined pairwise ho-
mographies, we obtain a final set of refined frame-to-mosaic ho-
mographies Ht,ref and stabilized images Wt.



2.2. Identifying Problem Pixels

Each location p = (x, y) in the mosaic reference frame has a set of
pixels from the warped images {Wt(p)} associated with it which
we call its timeline T (p). The size of each timeline |T (p)| may
vary from 0 to N depending whether the pixel at p was imaged
or not in each frame. Intuitively, since all pixels on the building
facade exhibit the dominant motion, they should appear stationary
in the mosaic whereas foreground objects such as trees and signs
move due to parallax. Given that each T (p) contains an unknown
mixture of background and foreground object pixels, our goal is
to correctly pick or estimate each background pixel M(p) where
|T (p)| > 0, forming a building mosaic M. In this paper we
assume that the lateral and vertical limits of the building associated
with corners, the roofline, the ground, etc. are given, and we do
not rectify the mosaic to compensate for an oblique viewing angle.

A robust estimator for M(p) under the assumption that fore-
ground pixels are in the minority (i.e., outliers) in T (p) is the
temporal median M(p) = median(T (p)). This is computed
separately for each color channel: Mred(p) = median(Tred(p)),
and so on, giving rise to the median mosaic Mmed . This estima-
tor fails, however, when foreground pixels are in the majority in a
particular timeline. We observe that except for large homogeneous
foreground regions or camouflaged foreground objects with almost
the same color as the background, the likelihood that T (p) has a
majority of foreground pixels is proportional to the variability or
“spread” of its color distribution. To robustly measure this vari-
ability, we use the median absolute deviation (MAD) [23], defined
as MAD(T (p)) = median(|Wt(p)−median(T (p))|) over all
t in the timeline. A scalar MAD value is obtained at each pixel by
computing it separately for each color channel and summing. A
high MAD value at p indicates a higher likelihood that Mmed(p)
is unreliable, so unreliable median mosaic pixels are filtered out by
thresholding their MADs—these are so-called MAD outlier pixels.
Finally, the raw MAD outlier mask is spatially smoothed with a
morphological majority operation.

2.3. Inpainting Missing Pixels

In this section we present an algorithm for filling the MAD out-
liers in Mmed that is built upon the work in Criminisi, Pérez, and
Toyama [15], a patch-based copying method combining ideas from
non-parametric texture synthesis and diffusion-based inpainting.
We will refer to their method as CPT inpainting.

2.3.1. Review of CPT inpainting

As diagrammed in Fig. 1, an empty tar-

Fig. 1. Source region
Φ, target region Ω,
target boundary dΩ,
target patch Ψp (from
Criminisi et al. [15])

get region Ω’s pixels are filled from its
border dΩ inward by copying square im-
age patches from a source region Φ to
target patches Ψp centered on p = (x, y) ∈
dΩ. Given the next target patch Ψp̂, an
exemplar patch Ψq̂ is selected from Φ
and pixels are copied to the unfilled por-
tion of the target patch Ψp̂ ∩ Ω from the
corresponding part of Ψq̂. Letting the
entire image region be denoted by I, Ψq̂

is chosen as the source patch with the
minimum SSD between it and the already-
filled part of the target patch Ψp̂ ∩ (I −
Ω) (normalized for area). As inpainting proceeds Ω shrinks while
Φ remains constant, leaving a band of filled pixels Ω0 −Ωt at step
t. Note that Φ can be smaller than I − Ω0.

A priority function P (p) = C(p)D(p) sets the order in which
patches along dΩ are filled. C(p) is a confidence term that mea-
sures the amount of reliable information around p with the for-
mula

∑
q∈Ψp∩(I−Ω)

C(q)/|Ψp|. Initially, C(p) = 0 ∀p ∈ Ω0

and C(p) = 1 ∀p ∈ I − Ω0. When pixels in Ψp̂ ∩ Ω are filled
in, their confidence values are updated from 0 to C(p̂), having the
effect of preferring sections of dΩ that were filled earlier vs. later.

D(p) is a data term proportional to the dot product of the tan-
gent vector to dΩ at p and the gradient vector ∇p with the maxi-
mum magnitude in Ψp∩(I−Ω). This encourages the extension of
linear structures by boosting the priorities of patches with a strong
edge “flowing into” them—as, for example, in Fig. 1.

2.3.2. Timeline Inpainting

Let the MAD outlier pixels be the target region Ω and the rest
of the median mosaic Mmed be the source region Φ. Our prob-
lem differs from pure spatial inpainting in that the timeline T for
each p ∈ Ω, provided it contains at least one background pixel,
should constrain the filling process. Thus, our major goals are
to determine which, if any, pixels in T (p) are from the building
background, and to integrate this information into the inpainting
process. Letting T (Ψp) = {Ψ1

p, . . . , Ψ
|T (p)|
p } be the timeline

of patches centered on p, we create a timeline mosaic Mtime by
modifying CPT inpainting in three major ways:

1. In the first of two stages, each patch-wise pixel copy to Ω
comes from one timeline patch Ψ∗

p̂ ∈ T (Ψp̂) maximally
likely to have come from the building

2. During stage one, the updated confidences C(p) of newly-
filled pixels are set to the motion-based background likeli-
hoods p∗

back (p) of the pixels in Ψ∗
p̂

3. If the mean background likelihood p̄back (Ψ
t
p̂) for every patch

in T (Ψp̂) is below a threshold τback , Ψp̂ is not filled at that
time. Stage two begins when all remaining areas of Ω meet
this definition, and consists simply of CPT inpainting

Each of these three modifications is explained below:

Timeline patch selection Consider a patch Ψp̂ in the mosaic Mtime

that is the next to be inpainted. Pixels in its unfilled part Ψp̂ ∩ Ω
will come from the corresponding part of one timeline patch Ψ∗

p̂ ∩
Ω. We copy pixels from the timeline rather than Φ to maximize
correctness, improve feature alignment, and allow for the reten-
tion of unique features not present in Φ. To pick a Ψ∗

p̂ that is most
likely to contain building pixels rather than foreground pixels, we
rely upon two cues: (1) Appearance-based similarity to other fea-
tures in the presumed “all-building” region Φ; and (2) Minimal
motion energy (indicating no occlusion in that frame).

Most buildings have repeated patterns such as windows, doors,
columns, bricks, etc., so building (as opposed to foreground) time-
line patches in Ω are likely to have a similar appearance to fea-
tures in Φ. However, SSD-based appearance matching alone is
a less reliable indicator of “buildingness” in homogeneous areas,
and can be improved by incorporating the likelihood that motion
occurred in that patch in a particular timeline frame. By com-
bining the unfilled portions of each timeline patch with the filled
part from the mosaic to create a timeline of composite patches
T (Ψ̃p̂) = {(Ψt

p̂ ∩ Ω) ∪ (Ψp̂ ∩ (I − Ω))}, we jointly measure
patch t’s building similarity and motion energy with the formula
B(Ψ̃t

p̂) = minq∈I |Ψ̃t
p̂−Ψq|2/p̄back (Ψ

t
p̂),1 with Ψ∗

p̂ determined
by ∗ = argmint B(Ψ̃t

p̂).

1∀q � the area fraction f = A(Ψq ∩ Φ)/A(Ψq) > 0.75. The SSD
| · |2 is computed over source pixels in Ψq ∩Φ, and is normalized by 1/f



The intersection of a pair of successive, thresholded difference
images was suggested in [24] as a method for identifying fore-
ground pixels. By converting the warped images to grayscale and
scaling their intensity values to [0, 1] to get {W′

t}, we can adapt
this approach to define a motion energy or foreground image at
time t as Ft = (|W′

t − W′
t−1|) ⊗ (|W′

t+1 − W′
t|) where | · | is

the absolute value and⊗ is the pixelwise product.2 Letting µ be the
mean foreground image value over all t, we define the background
likelihood for pixel p in warped image t as pt

back (p) = e−Ft(p)/µ,
and p̄back (Ψ

t
p̂) as the mean pixelwise background likelihood over

all pixels in Ψt
p̂ ∩ Ω.

Confidence term The background likelihoods p∗
back (Ψp̂ ∩ Ω) are

copied as the confidence values of the newly filled-in pixels in
Ψp̂ ∩ Ω. This tends to limit the propagation of bad choices in
subsequent iterations—i.e., patches bordering areas of higher mo-
tion energy are bypassed for low motion energy areas first. The
decaying confidence scheme of CPT inpainting does not apply be-
cause timeline patch pixels in the interior of Ω are no less reliable
than those near its edges.

Stopping criterion With no patch in T (Ψp̂) from the background,
there are no temporal constraints on what pixels to fill it with. Be-
cause unique features in Ω may not be similar to any patches in
Φ, we detect all-foreground timelines solely on the basis of exces-
sive motion energy. Specifically, if for every patch in T (Ψp̂) the
mean background likelihood p̄back (Ψ

t
p̂) < τback , Ψp̂ is not filled.

Subsequent inpainting in adjacent areas may allow some skipped
pixels to be filled later, but stage one halts when this condition is
true at every remaining p ∈ Ω. The holes that are left are gener-
ally much smaller than Ω0, with more building structure revealed,
and thus stage two can consist of pure CPT inpainting with much
better results than if it had been run in place of stage one.

3. RESULTS

In the limited space available here, we describe the operation of
our algorithm on a single image sequence. 801 24-bit color frames,
resampled to 360 × 240 pixels each, were captured at 30 fps from
a camera moving parallel to a building facade. Several objects
at different depths occlude parts of the building including trees,
bushes, and a large sign. Our algorithm was run on a subset of 17
frames from the sequence taken at intervals of every 50 frames;
four examples of these are shown in Fig. 2.

The median mosaic Mmed shown in Fig. 3(a) is mostly quite
good, recovering almost all of the facade cleanly (radial distor-
tion was automatically removed from the input frames using the
method in [19]). The near tree (e.g., frame 750 in Fig. 2) is al-
most entirely removed (some artifacts near the mosaic edges are
due to an insufficient number of overlapping images there). This
is because its large parallax motion causes occlusions to be brief
and thus tree pixels are in the minority in the timeline vs. build-
ing pixels. A significant problem area, however, zoomed in Fig. 4,
is created by the more distant tree, which exhibits relatively lit-
tle parallax motion. This object occludes many building pixels in
a majority of frames, confounding the median filter as shown in
Fig. 4(a).

Areas where Mmed is poor correlate well with the MAD out-
liers. The result of a conservative threshold which tags about 20%
of pixels as outliers is shown in Fig. 3(b). CPT inpainting to fill
Ω0 is insufficient, as too much structure is hidden. With a 21× 21

2This of course excludes the timeline’s first and last images

300 450

600 750

Fig. 2. Raw frames from building sequence

patch size and a search region Φ of all MAD inliers (above the
manually-chosen ground plane border indicated by the red line in
Fig. 3(b)), Fig. 4(b) shows the central window behind the small
tree replaced by a second-story doorway (!).

A temporal alternative to Mmed is the pixel-wise maximum
likelihood (ML) method of copying the pixel from the timeline
which has the lowest motion energy. Results for MML around
the window are shown in Fig. 4(c). This method does not cause
blurring as Mmed does, and often succeeds with the background
visible in only a minority of the timeline. However, when there
is no background visible anywhere in the timeline, a foreground
pixel is erroneously drawn.

The results after stage one of timeline inpainting are shown in
Fig. 3(c) and Fig. 4(d). For this stage, a shifting, circular search
region Φ(p) (radius = 150 pixels3) around each 11 × 11 patch’s
center p was used. In Fig. 4(d) it appears that the unfilled pixels
after stage one (τback = 0.6) are correlated with the areas where
MML is incorrect. The results after CPT inpainting in stage two
are shown in Fig. 3(d) (post-processed with automatic affine recti-
fication based on vanishing point identification) and Fig. 4(e).

4. CONCLUSION

We have presented a novel approach to detecting and removing oc-
clusions of building facades in image sequences using a combina-
tion of temporal and spatial inpainting. An important unaddressed
image processing issue is the identification of homogeneous re-
gions which are foreground in every frame of the sequence, which
MAD does not detect. Higher-level pattern recognition—such as
classification to differentiate the largely vertical and horizontal tex-
tures of buildings from the organic patterns of trees, for example—
will likely be necessary for this step, followed by pure spatial in-
painting (perhaps multi-scale) to fill in missing pixels.

As part of our larger architectural modeling project, we are
currently investigating techniques for straight line analysis and
vanishing point detection [2] to automatically rectify the texture
map and segment planar facade regions from the ground and each
other at building corners.

3For reference, window centers are about 65 pixels apart vertically and
horizontally
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Fig. 3. (a) Median mosaic Mmed ; (b) MAD outliers in Mmed ; (c)
Mtime after stage one; (d) Mtime after stage two (rectified)

.
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[15] A. Criminisi, P. Pérez, and K. Toyama, “Region filling and object
removal by exemplar-based image inpainting,” IEEE Trans. Image
Processing, vol. 13, no. 9, 2004.

[16] J. Jia, T. Wu, Y. Tai, and C. Tang, “Video repairing: Inference of
foreground and background under severe occlusion,” in Proc. IEEE
Conf. Computer Vision & Pattern Recognition, 2004.

[17] Y. Wexler, E. Shechtman, and M. Irani, “Space-time video comple-
tion,” in Proc. IEEE Conf. Computer Vision & Pattern Recognition,
2003.

[18] J. Shi and C. Tomasi, “Good features to track,” in Proc. IEEE Conf.
Computer Vision & Pattern Recognition, 1994.

[19] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, Cambridge University Press, 2000.

[20] H. Sawhney, S. Hsu, and R. Kumar, “Robust video mosaicing
through topology inference and local to global alignment,” in Proc.
European Conf. Computer Vision, 1998.

[21] M. Irani, B. Rousso, and S. Peleg, “Computing occluding and trans-
parent motions,” Int. J. Computer Vision, 1994.

[22] M. Black and P. Anandan, “The robust estimation of multiple mo-
tions: parametric and piecewise-smooth flow fields,” Computer Vi-
sion & Image Understanding, 1996.

[23] T. Tommasini, A. Fusiello, E. Trucco, and V. Roberto, “Making
good features to track better,” in Proc. IEEE Conf. Computer Vision
& Pattern Recognition, 1998, pp. 178–183.

[24] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers:, “Principles and
practice of background maintenance,” in Proc. Int. Conf. Computer
Vision, 1999.


