
Abstra
tIntegrating Multiple Visual Cues forRobust Tra
kingChristopher Eri
 RasmussenYale University2000Vision-based tra
king is a promising te
hnology for tasks su
h as human-
omputerintera
tion and mobile robot navigation. However, distra
tion and o

lusion aremajor obsta
les to robust performan
e. Though tra
king is often framed as stri
tlyan estimation problem, these phenomena also engender a 
orresponden
e problemthat must be addressed. Without 
areful 
onsideration of what image data, if any,to asso
iate with a tra
ked obje
t from frame to frame, the estimation pro
ess 
anbe
ome biased and the obje
t lost.In this dissertation, we will des
ribe a framework that in
orporates and indeedemphasizes expli
it reasoning about data asso
iation as a means of improving tra
k-ing performan
e in many diÆ
ult visual environments. This framework is builtaround a hierar
hy of three tra
king strategies that result from as
ribing ambiguousor missing data to the following 
auses: (1) noise-like visual o

urren
es; (2) persis-tent, known s
ene elements (i.e. other tra
ked obje
ts); or (3) persistent, unknowns
ene elements.First, we introdu
e a randomized tra
king algorithm adapted from an existingprobabilisti
 data asso
iation �lter (PDAF) that is resistant to 
lutter and followsagile motion. The algorithm is applied to three di�erent tra
king modalities|homogeneous regions, textured regions, and snakes|and extensibly de�ned so that



the in
lusion of other methods is straightforward.Se
ond, we add the 
apa
ity to tra
k multiple intera
ting obje
ts by adapting ajoint version of the PDAF to vision. This algorithm oversees 
orresponden
e 
hoi
esbetween same-modality tra
kers and image features to ensure that they are feasiblydistributed. We then derive a related te
hnique that allows mixed tra
ker modalities,handles obje
t overlaps, and dedu
es depth orderings.Finally, we represent 
omplex obje
ts as 
onjun
tions of 
ues that are diverse bothgeometri
ally (e.g., a person's fa
e, hands, and torso) and qualitatively (e.g., shape,
olor, and texture). The use of rigid and hinge 
onstraints between part tra
kersand multiple attributes to des
ribe individual parts renders the whole obje
t moredistin
tive, redu
ing sus
eptibility to mistra
king.Models for tra
ked targets 
an be 
exibly spe
i�ed; results are given for a numberof obje
ts, in
luding people, 
ars, airplanes, mi
ros
opi
 
ells, and 
hess pie
es.
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Chapter 1
Introdu
tion

If you dare not trust that you see, 
onfess not that you know:If you will follow me, I will show you enough . . .William ShakespeareMu
h Ado About NothingA
t 3, S
ene 2To follow an obje
t with the eye|to tra
k it|is virtually a sub
ons
ious a
tivityfor a person most of the time. Only under very diÆ
ult 
ir
umstan
es is one aware ofit taking any e�ort at all: while wat
hing the ball 
arom around energeti
ally duringa pinball game, perhaps, or trying to pi
k out a friend's fa
e as they make their waythrough a 
rowd. Without attempting to enumerate every reason that tra
king isharder in these situations, a few fa
tors stand out. The speed of movement of theball, its frequently unpredi
table 
hanges of dire
tion, the proximity of similar fa
esto the friend's fa
e, and the 
onstant disappearan
es and reappearan
es of their bodybehind others|all seem to 
onspire to interrupt what is normally a smooth tra
kingpro
ess. 1



2The history of arti�
ial intelligen
e amply shows, of 
ourse, that even skills whi
h
ome naturally to people are rarely straightforward to impart to 
omputers. Nonethe-less, there is a strong motivation to study visual tra
king and its attendant issues,if only be
ause of the many useful tasks that 
omputers and robots 
ould 
arryout with just a fra
tion of the human visual system's 
apabilities. For instan
e,many resear
hers have been interested in per
eption for autonomous vehi
les, su
has driverless 
ars that follow lane lines and dete
t other 
ars as they negotiate high-ways [35, 116℄. Su

ess in this area would have obvious rami�
ations for publi
transportation and shipping. Other have studied mobile robots that visually avoidobsta
les and lo
ate landmarks to navigate within buildings, allowing them to makedeliveries or give tours [25, 33, 55℄. Another fo
us of investigation has been on gath-ering information from passive, ground- and air-based 
ameras for surveillan
e anda
tivity 
lassi�
ation tasks su
h as se
urity, military re
onnaissan
e, and studyingpedestrian and vehi
le traÆ
 patterns [79, 113℄. The human body has also been thesubje
t of mu
h work on analyzing gestures, fa
ial expressions, and other motionsin order to drive 
hara
ter animation, understand sign language, serve as input togames and other software, and re
ognize a
tions [32, 40, 44, 104, 112, 122℄. Finally,a number of ongoing proje
ts seek to 
ombine disparate tra
king skills in an e�ortto endow \intelligent" houses with an awareness of their o

upants and an ability tointera
t with them [73, 107℄. These examples represent just a small sample of thediverse potential appli
ations of visual tra
king resear
h.Traditionally, the emphasis in framing the visual tra
king problem has been onestimation [86, 94℄. Given a set of data that we wish to represent 
on
isely witha parametri
 model, an estimator is a pro
edure for �nding the parameters of themodel whi
h in some sense best �ts the data. In tra
king, the parameters (known
olle
tively as the state) are typi
ally time-varying, salient 
hara
teristi
s of an obje
t



3

Figure 1.1: Multiple distra
tions 
ompli
ate tra
kingin the �eld of view. Common 
hoi
es in
lude lo
ation in the image, depth along the
amera axis or image s
ale, orientation in the image plane or three dimensions (3-D),velo
ity and/or a

eleration of any of these quantities, shape (possibly allowing fornonrigid deformation), surfa
e properties like 
olor, and so on. The data availableto guide estimation are, theoreti
ally, all of the images observed up to the presenttime. However, unless the proje
tion of the obje
t o

upies the entire image area, theobje
t model is generally only suÆ
ient to explain a fra
tion of the data. Therefore, astandard pro
edure is to segment out the portion of the image data whi
h 
orrespondsto the obje
t and use it alone for estimation. This assumes that the obje
t's imageproje
tion 
an be unambiguously dis
riminated from the rest of the image.This basi
 approa
h has led to mu
h fruitful resear
h on tra
king topi
s su
h asinferring 3-D stru
ture from 2-D images [106℄ and dynami
s [18℄|how to keep upwith a moving target by predi
ting where it will be next. These kinds of problemsare 
hallenging in their own right. But as visual tra
king moves out of the laboratoryand into the real world, 
ontrolled 
onditions disappear and it be
omes 
onsiderablymore diÆ
ult to a

urately identify an obje
t's image proje
tion. Unsurprisingly, the



4same visual phenomena noted above whi
h are problemati
 for people also interferewith estimation: agile motion, distra
tions, and o

lusions. We de�ne agile motionas a sustained obje
t movement or a

eleration that ex
eeds a tra
ker's dynami
predi
tion abilities. Its o

urren
e 
an undermine the estimation pro
ess be
ause itrenders the putative lo
ation of the obje
t's image proje
tion un
ertain, 
ompli
atingeÆ
ient segmentation. A further obsta
le to 
lear-
ut segmentation is a distra
tion,or another s
ene element whi
h has a similar image appearan
e to the obje
t beingtra
ked. For example, the numerous penguins in the rookery shown in Figure 1.1hinder any e�ort to tra
k just one bird. A naive penguin segmenter may returnmultiple penguin-
ontaining image regions or it may isolate a unique-but-wrong one.Either out
ome will 
ause the estimator to work from an in
orre
t data set. Finally,o

lusion results when another s
ene element is interposed between the 
amera andthe tra
ked obje
t, blo
king a portion of the obje
t's image proje
tion. This resultsin in
omplete data or no data being supplied to the estimation algorithm.These phenomena are worrisome be
ause of their potential to bias a tra
ker'sestimates by polluting or de
imating the data. Moreover, if a visual disturban
elasts too long or is too severe, the estimator/tra
ker 
an e�e
tively be
ome 
onfusedand lose tra
k altogether of the obje
t. By mistra
king, we mean that some 
riterionfor the quality of the state estimate over the duration of the tra
king task is notsatis�ed. Su
h a 
riterion might be that the di�eren
e between the state estimateand the ground truth state (insofar as it is knowable or humanly assessable) is nevergreater than a 
ertain threshold, or at least for no longer than a preset length oftime. Sin
e visual disturban
es are ubiquitous in everyday situations, methods toover
ome them are 
riti
ally important if visual tra
king is to be robust.The aim of this dissertation is to analyze some of the essential 
auses of distur-ban
es in tra
king and outline a 
omprehensive 
omputational framework for deal-



5ing with them. At the most fundamental level, it seems 
lear from our expositionthat these problems require an approa
h that 
ombines both estimation and 
orre-sponden
e. Corresponden
e is the question of how to determine what image data toproperly asso
iate with the obje
t being tra
ked and therefore to base the estimationpro
ess on. We 
ontend that by 
ombating the various forms of the 
orresponden
eproblem that they engender, we will be able to 
ountera
t many of the negativee�e
ts of agile motions, distra
tions, and o

lusions on a

urate estimation.We will ta
kle these problems with two broad approa
hes. First, we will des
ribeseveral data asso
iation [5℄ versions of the Kalman �lter [69℄, an estimation te
hnique
ommonly used for visual tra
king, that are spe
ially 
onstru
ted to handle 
ertain
lasses of these o

urren
es. Two of the data asso
iation �lters that we present areexisting algorithms from the radar and sonar literature that we have made nontrivialmodi�
ations to in order to adapt to vision. We will also introdu
e two other, moresophisti
ated �lters, that are novel. The standard Kalman �lter requires tinkeringbe
ause in order to assure an optimal estimate it assumes a Gaussian distributionon target observations. Thus, it may fail when this assumption is violated, as is the
ase when a distra
tion or o

lusion indu
es a multimodal distribution on target-likeobservations.The se
ond part of our strategy is a method of de�ning a tra
ked obje
t moredistin
tively so that visual disruptions happen less frequently and with less severity.Distra
tions are de�ned as image features that are similar to the target, so a morespe
i�
 target des
ription (e.g., \red triangle" instead of just \red") tends to redu
ethe number of su
h features. A de fa
to des
ription of an obje
t is given by theset of modalities|appearan
e, 
olor, shape, et
.|used to tra
k it, leading us toemploy 
onjun
tions of modalities for greater robustness. Geometri
 relationshipssu
h as \triangle-below-
ir
le" instead of just \triangle" 
an also be added to an



6obje
t des
ription to boost distin
tiveness. The overar
hing aim of these measures isto redu
e or eliminate the in
iden
e of non-target-originated observations and thusthe degree to whi
h the assumption of a Gaussian distribution is not met.Ex
eptions to the Kalman �lter's Gaussian assumption do not ne
essarily 
ausemistra
king. They simply remove the guarantee of optimality, whi
h in any 
aseis rarely a
hievable for real-world images. Thus, the algorithms we will presentdo not seek to 
ompletely eliminate problems, only to mitigate them. Suboptimalperforman
e 
an, of 
ourse, result in mistra
king. Our 
laim is that these te
hniqueswill help many tra
kers perform at a satisfa
tory level in a wider range of visualsituations.This work is primarily organized around an analysis of three interpretations ofdistra
tions and o

lusions in the 
ontext of estimation, and the des
ription of aseries of �lters tailored to deal with them. First, we treat visual disturban
es asrandom, transitory events. This prompts the simplest of the four data asso
iation�lters that we will present: the Probabilisti
 Data Asso
iation Filter (PDAF) [5℄.Se
ond, we examine the 
ase where disruptions are 
aused by other tra
ked obje
ts.The Joint Probabilisti
 Data Asso
iation Filter (JPDAF) [5℄ and Joint LikelihoodFilter (JLF) are responses to this interpretation. Finally, we allow that disruptionsmay be persistent and of unknown origin. Our strategy in this diÆ
ult situation is tode�ne the obje
t more distin
tively: the Constrained Joint Likelihood Filter (CJLF)is a method for 
onjoining tra
kers of di�erent modalities that are geometri
allylinked. Ea
h of these �lters (in the order just listed) in
orporates the 
ore of theone pre
eding it while adding more fun
tionality. Thus, for example, the PDAF
an withstand noisy visual phenomena that may be distra
ting, but the JPDAF
ompensates for these and distra
tions 
aused by other targets.As the PDAF and JPDAF are based on the Kalman �lter, they work with point-
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Figure 1.2: Noise-like distra
tions due to falling snowlike measurements rather than dire
tly on images. The other major 
omponent ofthis dissertation is therefore a pro
ess for segmenting a dis
rete set of image areasthat resemble the target (where resemblan
e is a metri
 that depends on the modalityused for tra
king) and supplying summaries of these as measurements to the dataasso
iation �lters, in
luding the JLF and CJLF. The term \measurement" thus servesas a 
onvenient shorthand for 
oherent subsets of the image data that may be usedfor state estimation. It is the data asso
iation �lters that address the 
orresponden
eportion of the visual tra
king problem de�ned above by sele
ting or weighting thein
uen
e of these alternatives on estimation.We will now examine the three interpretations of visual disruptions and the dataasso
iation �lters that they motivate in somewhat more detail.Noise An often-plausible interpretation of multiple or missing target-like observa-tions results from as
ribing them to random visual events. The image is typi
ally
orrupted by noise generated by the 
amera CCD or video 
apture devi
e, but su
he�e
ts are usually only signi�
ant for targets proje
ting to very small image areas.



8Another kind of transient event that 
an hamper obje
t tra
king is due to s
enepro
esses su
h as dazzling sun re
e
tions on a 
hoppy body of water, or bad weatherlike the falling snow in Figure 1.2, whi
h results in a spe
kled foreground. Thesephenomena 
an distra
t estimation by 
ausing false target-like observations if theyand the obje
t have similar 
olorations, or if the segmentation pro
edure is sensi-tive to strong motion or intensity 
ues. Alternatively, the noisy image pat
hes mayperiodi
ally obs
ure the target, suppressing the expe
ted target-originated observa-tion. If the 
orresponden
e me
hanism is too narrow in the data it allows to beused for estimation (pi
king only one of several possible observations, for example),it may ex
lude the 
orre
t data and eventually be pulled away from the target. By
onsidering more data, our adaptation of the PDAF algorithm to vision lessens the
han
e of a misstep and thus improves robustness. Assuming that their distributionis roughly uniform or Poisson and that their density is not too great, the e�e
ts ofthe transient, non-target-originated observations 
an
el ea
h other out and the morepersistent target-originated observation dominates the estimation pro
ess.The segmentation pro
edure that we introdu
e for �nding measurements uses anonlo
al sear
h in order to 
onsistently identify multiple possible sour
es of ambigu-ity. A byprodu
t of this nonlo
ality is improved performan
e when the target makesagile movements. The sudden jump of a target away from its expe
ted state 
an
onfound tra
kers that are not prepared for 
lutter, but by 
asting a wide net fordistra
tors our algorithm 
at
hes up with su
h motions and resumes normal tra
king.Other obje
ts When trying to tra
k multiple similar or identi
al obje
ts, by de�-nition there is more than one image feature that mat
hes the obje
t des
ription well,su
h as with the penguins in Figure 1.1. This means that the segmentation pro
edureof a single tra
ker running in isolation will 
onsistently return multiple measurements



9when the obje
ts are 
lose to one another. Be
ause these measurements are persis-tent, they invalidate the assumption of the PDAF that only one measurement isdue to the target and that the rest stem from noise. The in
lusive use of data bythe PDAF ba
k�res in this 
ase, yielding a state estimate that is a 
ompromise be-tween the estimates that would be obtained if a separate estimator were 
orre
tlyasso
iated with ea
h persistent measurement. The JPDAF e�e
tively implementsthis approa
h by extending the PDAF to share information between tra
kers. Themaintenan
e of a logi
 of asso
iations prevents di�erent tra
kers from 
laiming thesame measurement and thus substantially improves the quality of the data they usefor state estimation. To ensure that the tra
kers are all 
onsidering the same poolof measurements, a joint segmentation pro
edure is ne
essary to merge the resultsof the individual segmenters (whi
h only look at the image in the neighborhood ofwhere they expe
t their obje
t to proje
t) and eliminate dupli
ates.The JPDAF only works for tra
king a set of identi
al obje
ts and does not 
on-sider the possibility of targets o

luding one another, a fairly frequent o

urren
e. Ano

lusion modi�es the observed image proje
tion of an obje
t, 
ausing a mismat
hwith the expe
tations of the standard segmentation pro
edure. The JLF expandsthe sharing of information between tra
kers in order to dedu
e o

lusions duringsegmentation, resulting in better measurements. Moreover, the JLF evenly assortstra
kers among image features as the JPDAF does, but it improves on the JPDAFby allowing a mixture of di�erent tra
kers to intera
t|e.g., a 
olor-based tra
kerand a shape-based tra
ker.Persistent, unknown features Distra
tions and o

lusions may also result fromuntra
ked, non-noise s
ene elements. This 
lass of phenomena is diÆ
ult to 
ounter-a
t within the 
ontext of a data asso
iation �lter. Rather, we will pursue a strategy
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Figure 1.3: Conjun
tions of parts and attributes des
ribe obje
ts more distin
tivelyof trying to redu
e the in
iden
e of persistent disturban
es by de�ning the targetmore distin
tively. Consider the so

er players in Figure 1.3. A 
olor-based tra
kerassigned to the shirt of the player on the right may have trouble with distra
tionsbe
ause there are other red regions in the image. However, by linking the shirttra
ker to a white-shorts tra
ker via a 
onstraint, we eliminate red regions that arenot above white regions as potential distra
tors. A still-more distin
tive des
riptionof the shirt would result from taking into a

ount the appearan
e of the logo on itsfront. Then we would be looking for red regions with the proper insignia above whiteregions, a unique feature in this image.Adding geometri
 parts to an obje
t des
ription, of 
ourse, makes the e�e
tivetarget bigger. A bene�t of in
reased size is a 
orresponding de
rease in the negativein
uen
e of typi
al o

lusions. If we were tra
king the red player's shirt alone, forexample, the arm of the yellow player in front on him would bias any estimateof its size. When tra
ked in 
onjun
tion with the logo and the shorts, whi
h areuno

luded, the shirt tra
ker has additional s
ale information to help improve itsestimates.



11The CJLF is an extension of the JLF that in
orporates 
onstraint information tomore distin
tively des
ribe and thus more e�e
tively tra
k an obje
t. It provides aframework for the 
ombination of multiple attributes, su
h as the 
olor of the shirtand appearan
e of the logo, and multiple geometri
 parts, su
h as the shirt andshorts.1.1 ThesesThis dissertation is 
on
erned with mitigating the e�e
ts of disruptions in visualtra
king 
aused by distra
tions, o

lusions, and agile motions. We observe thatthese phenomena 
ause ambiguity about whi
h image features to base estimation on.Therefore, we 
ontend that a 
orresponden
e problem must be addressed in 
on
ertwith estimation in order to ensure robust tra
king. Our approa
h is to 
lassifyseveral possible sour
es of these disturban
es|namely, noise, other tra
ked obje
ts,or persistent, unknown s
ene elements|and 
onstru
t or adapt data asso
iation�lters apposite for ea
h one. A guiding prin
iple in the design of these �lters is theintegration of multiple sour
es of information. Multiple tra
kers share informationabout 
orresponden
es to avoid interferen
e and single-obje
t tra
kers are de�ned as
onjun
tions of multiple attributes and parts for greater distin
tiveness.Our approa
h to distin
tiveness leads to a building-blo
k strategy of 
omposing
omplex tra
kers from relatively simple pie
es (in terms of geometry and modality)instead of 
reating a monolithi
 algorithm spe
ialized for a parti
ular task. Thismakes our framework 
exible with regard to what is being tra
ked and amenable tothe in
orporation of te
hniques used by other resear
hers or devised in the future.Brie
y, this dissertation makes the following 
ontributions to vision-based tra
k-ing:



12� We adapt and apply data asso
iation methods (PDAF, JPDAF) to vision forsigni�
antly better tra
king performan
e in the presen
e of noise and multipletargets� We de�ne a robust, general algorithm for �nding a set of good mat
hes to thetarget's image proje
tion� We put di�erent tra
king modalities (
olor regions, SSD features, and snakes)into a 
ommon framework for 
omparison and interoperation; our approa
h to
olor region tra
king is original� We introdu
e a joint tra
ker (JLF) that supersedes the JPDAF by a

om-modating tra
kers with di�erent modalities, handling partial o

lusions, anddedu
ing depth relationships from the image� We extend the JLF to in
orporate geometri
 
onstraints between low-leveltra
kers, in
luding a novel notion of \layered" attributes of the same imageareas1.2 OverviewChapter 2 reviews the probabilisti
 foundations of the visual tra
king problem, ex-plains the assumptions of our Kalman �ltering approa
h, and de�nes some usefulterms.Chapter 3 derives a formulation of image similarity for three modalities that relyon 
olor, shape, or appearan
e to de�ne the target. De�ned more generally, wewill 
all these modalities homogeneous regions, snakes, and textured regions, respe
-tively. These ways of interpreting images will 
onstitute the basis of the segmentationmethod outlined in the following 
hapter.



13Chapter 4 addresses noise and agile motion as 
auses of mistra
king. First, theimage prepro
essing ne
essary for su

essful adaptation of data asso
iation �lters tovision are analyzed. Spe
i�
ally, we examine gradient as
ent methods for obtaininga single best hypothesis with whi
h to update the state estimate, and then detail apro
edure that extra
ts a set of good hypotheses using random sampling. It reviewsa measurement-based tra
king algorithm from the radar and sonar literature, theProbabilisti
 Data Asso
iation Filter (PDAF), that performs well in the presen
e ofnoise. The modalities from Chapter 3 are used to tra
k various obje
ts that exhibitagile movement and in the presen
e of ba
kground 
lutter.Chapter 5 examines the problem of interferen
e 
aused by other known obje
ts.It explains two te
hniques for tra
king that extend the work of the previous 
hapterto manage a known number of multiple similar or intera
ting obje
ts. The �rst is anexisting extension to the PDAF for joint tra
king, the JPDAF, whi
h is explainedand adapted to vision with a re�nement to the measurement generation pro
ess that
ombines gradient as
ent with random sampling. The se
ond te
hnique 
overed, theJoint Likelihood Filter (JLF), is a new algorithm that handles targets of di�erentmodalities that overlap one another by reasoning about their depth ordering.Chapter 6 introdu
es methods for des
ribing a tra
ked obje
t more distin
tivelyin order to minimize the deleterious e�e
ts of unknown, persistent distra
tions in thes
ene. An extension to the JLF, the Constrained Joint Likelihood Filter, is explainedthat de�nes 
omplex obje
ts via geometri
 
onstraints between tra
kers of like anddi�erent modalities.Chapter 7 surveys related work on tra
king by other resear
hers and analyzes itsrelationship to the te
hniques promulgated here.Finally, we sum up our 
ontributions in Chapter 8 and dis
uss future resear
hdire
tions.



Chapter 2
Ba
kground
Mumford [89℄ and others have suggested that many problems in vision may be 
astas an attempt to �nd a maximum a posteriori (MAP) estimate [86℄ of the state ofthe world given a signal that is a transformed version of it. The image I per
eivedby a 
amera or eye at any given moment is the result of a transformation of theworld W di
tated by the laws of physi
s. Bayes' theorem [89, 101℄ provides a toolfor reasoning probabilisti
ally about the world from what is seen:p(W jI) = p(I jW)p(W)p(I) (2.1)p(I) 
an be dedu
ed from the other terms by p(I) = R p(I jW)p(W)dW (whereW 2 W, the spa
e of all possible worlds), so it is typi
ally treated as a normalizing
onstant 1=k. A MAP estimate of the state of the world, whi
h is not ne
essarilyunique, is a maximally likely one given the observed image: argmaxWp(W jI). Themaximum likelihood (ML) estimate [38, 101℄ is equivalent to the MAP estimateassuming a uniform (and therefore noninformative) prior probability on the state ofthe world p(W).To tra
k, an observer fo
uses its interest on a small part of the world, whi
h we14
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all an obje
t or target, and takes past images into a

ount. At time t the stateXt 2 X represents the 
urrent estimate of the obje
t's salient parameters (where Xis a subspa
e ofW). Instead of a single image, a tra
king estimator uses the sequen
eof images It; It�1; : : : observed so far. Thus, the tra
king task in the MAP frameworkis to estimate a state that maximizes p(Xt j It; It�1; : : :). Applying Bayes' theoremand rearranging yields the following expression [5, 60℄:p(Xt jIt; It�1; : : :) = ktp(It jXt)p(Xt jIt�1; It�2; : : :) (2.2)Here p(Xt j It�1; It�2; : : :), whi
h summarizes prior knowledge about Xt, is a pre-di
tion based on the previous state estimate and knowledge of the obje
t's dy-nami
s. In order to simplify the last term on the right hand side, we must as-sume that obje
t dynami
s are su
h that states form a Markov 
hain [101℄, sop(Xt jXt�1;Xt�2; : : :) = p(Xt jXt�1). This yields p(Xt j It�1; It�2; : : :) = RXt�1 p(Xt jXt�1)p(Xt�1 jIt�1; It�2; : : :).The quantity p(It jXt) des
ribes the relative probability of observing a parti
ularimage at time t given the 
urrent state. We 
all this the image likelihood. The imagelikelihood depends on the physi
s of image formation and noise that may 
orruptwhat is expe
ted [75℄. Assuming that the laws of opti
s are �xed and that noisesour
es are roughly stationary, we 
an drop the time indi
es and refer to the imagelikelihood as p(I jX).In order to de�ne p(I jX) more pre
isely, we will �rst introdu
e a few terms. Letthe spa
e of images be I and � : X ! I be an image predi
tion fun
tion whi
h de-s
ribes the expe
ted image proje
tion of the target assuming that it is in a parti
ularstate. Depending on how detailed it is, X alone may be insuÆ
ient to predi
t an im-age, making it ne
essary to build information aboutW into � (besides physi
al laws



16themselves). For example, if they are not expli
itly in
luded in X, assumptions mustbe made about lighting, o

lusions, ba
kground, re
e
tan
e properties of the tra
kedobje
t, 
amera variables su
h as fo
al length, and so on. In this sense, modeling theimage formation pro
ess is 
losely related to 
omputer graphi
s [43℄.The image a
tually observed also depends on noise. Noise is a fa
tor that in-
reases un
ertainty about the exa
t image proje
tion of the tra
ked obje
t. With noun
ertainty, the image likelihood p(I jX) would be unity at the exa
tly the expe
tedimage and zero everywhere else. With it, other images tend to have a likelihoodproportional to their degree of similarity to the expe
ted image.An eÆ
ient algorithm for 
omputing the MAP estimate of Equation 2.2 whenp(Xt j It; It�1; : : :) is Gaussian is the Kalman �lter [5, 69℄. In order for p(Xt jIt; It�1; : : :) to be Gaussian, p(I j X), p(Xt j Xt�1), and the prior probability ofthe state before any images are viewed must be Gaussian. Some possible 
auses ofand remedies for non-normality are dis
ussed in [60℄; in Chapters 4 and 5 we presentdata asso
iation �lters that handle 
ertain kinds of violations of the Kalman �lter'sassumptions.Tra
king �lters su
h as the Probabilisti
 Data Asso
iation Filter (PDAF) andJoint Probabilisti
 Asso
iation Filter (JPDAF) [5℄ were originally developed fortra
king air
raft radar blips, a domain that di�ers from vision-based tra
king ina number of respe
ts. Most importantly, many radar-type targets are simply points,limiting their state to position and dynami
s. We need to in
lude su
h parametersas s
ale, orientation, 
olor, and shape. Furthermore, the unmodi�ed data asso
iation�lters assume that a measurement or measurements are impli
itly provided to them.The meaning of a \measurement" in the 
ontext of raw images is not immediatelyobvious. As we noted in the previous 
hapter, we de�ne measurements to be imageareas that mat
h the target's expe
ted image proje
tion well. A dis
rete list of the



17modes of the image likelihood fun
tion redu
es the data any state estimator mustpro
ess, while 
apturing the intuitive notion of alternative 
andidate states that atra
ker might be in.For radar blips, a target might be expe
ted to be observed as a bright pointon a dark ba
kground, so simple thresholding would qui
kly segment out all high-likelihood hypotheses for the target lo
ation. These hypotheses 
ould be su

in
tlyrepresented as a list of (x; y) pairs. Generating visual target measurements is usuallymore diÆ
ult than thresholding, and their extents require more information to beadequately summarized than simple image lo
ation. Possible measurement parame-ters in
lude geometri
 
hara
teristi
s relevant to the target state su
h as the lo
ationof the area's 
enter and its height, width, and orientation. These parameters de�ne ameasurement spa
e Z su
h that a point Z 2 Z is related to a stateX via a 
ontinuousmeasurement fun
tion H(X) = Z. The measurement fun
tion may simply redu
ethe dimensionality of X by dropping its temporal parameters, or it may also des
ribea more 
ompli
ated relationship between what is measured and what is estimated.The bases for p(I jX), and therefore for the measurement generation pro
edurethat is des
ribed in Chapters 4 and 5, are the form of the predi
ted image proje
tionof a target �(X) and the method for quantifying the similarity of the image I tothat predi
tion. Both of these depend on what we 
all the modality used to identifythe obje
t. A tra
king modality is a visual attribute su
h as a spe
i�
 shape, 
olor,dire
tion of motion, et
. that 
onstitutes a tra
king algorithm's 
omplete des
riptionof its target. For example, suppose we want to tra
k a bright red ball. We might
hoose a 
olor modality to predi
t the hue of the ball's 
ir
ular image proje
tionand to de�ne a metri
 on 
ir
ular areas of hue in order to gauge the similarityof our predi
tion to the a
tual image. This method does not exploit all availableimage information about the ball (ignoring, for instan
e, any designs printed on it



18or its motion), but makes a 
hoi
e about what information is relevant and adequate.The a
t of sele
ting a modality is �rst an a
knowledgement that there is as yetno all-purpose, exa
t theory of obje
t appearan
e, and se
ond an assertion thatfor eÆ
ien
y's sake only partial information, if pi
ked judi
iously enough, 
an yieldsatisfa
tory tra
king performan
e.The question of whether the information about X transmitted by a modalityis the same as that 
arried by I is 
aptured by the notion of a suÆ
ient statisti
[27℄. Most modalities are not suÆ
ient statisti
s, so we should be 
on
erned abouttheir e�e
t on the a

ura
y of estimating X. It is 
ertainly possible, based on theimage environment and target, to use a tra
king modality that removes too mu
hstate information to be useful. Of 
ourse, the image itself may not 
ontain enoughinformation about the obje
t for it to be tra
ked. The methods des
ribed in thisdissertation pla
e the ultimate responsibility for determining the best modality fora given tra
king task, or whether a task 
an indeed be a

omplished, in the user'shands. In Chapter 8, we sket
h a possible approa
h to automating these de
isions.The next 
hapter des
ribes in detail three di�erent, 
omplementary modalitiesthat we use for tra
king.



Chapter 3
Tra
king Modalities
In this 
hapter we dis
uss the �rst 
omponent of our approa
h to tra
king solitaryobje
ts assuming they are the only salient visual features in the image. This is theform of the likelihood fun
tion p(I jX) for the various modalities used to analyzethe image. The image likelihood is expli
ated for three spe
i�
 types of tra
ker:homogeneous regions, textured regions, and snakes.3.1 RegionsThe term \region" has a pre
ise mathemati
al meaning (i.e., an open, 
onne
ted set[50℄) that di�ers slightly but signi�
antly from the sense in whi
h this dissertationuses it. For visual tra
king, we de�ne a region as the proje
tion onto the imageof a simply 
onne
ted mathemati
al region lying on a smooth surfa
e. We willsubsequently refer to the mathemati
al region that proje
ts to an image region as apat
h in order to avoid 
onfusion and emphasize its relationship to a physi
al surfa
e.The image predi
tion fun
tion � de�ned in Chapter 2 has a few essential 
ompo-nents for a given region R. Whether derived from the region's state X or taken as
onstants, 
ertain values are ne
essary to simulate the image formation pro
ess and19
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S

R

P

Figure 3.1: Viewing geometry for the proje
tion of a surfa
e pat
h P onto an imageregion R.arrive at a predi
ted image �(X). One set of required variables des
ribes the geom-etry of the pat
h P that gives rise to R, in
luding shape, lo
ation in R3 relative tothe viewer, and orientation. A se
ond group of variables summarizes the re
e
tan
eproperties of P , su
h as its pattern of albedos for various spe
tra (e.g., 
oloration)and bidire
tional re
e
tan
e distribution fun
tion (BRDF) [54℄. Finally, informationabout s
ene illumination, 
amera parameters, o

lusions or inter-re
e
tions involvingthe surfa
e S asso
iated with P , and other in
identals must also be en
oded.This se
tion examines two spe
i�
 kinds of regions distinguished by the re
e
tan
eproperties of P . Let 
P : P ! R3 be a fun
tion des
ribing the intrinsi
 
olor patternover P in RGB spa
e (akin to a 
omputer graphi
s texture map [43℄). If 
P (P ) is
onstant, then we 
all R a homogeneous region. If 
P (P ) has signi�
ant intensitygradients both verti
ally and horizontally (P may be 
urved, but its simple 
onne
t-edness allows it to be mapped to R2), then we 
all R a textured region. A Lambertian[54℄ BRDF is assumed for both homogeneous and textured regions. The di�eren
esin 
P (P ) between the two region types lead to alternative formulations of the imagepredi
tion fun
tion � and similarity between the a
tual and predi
ted images.



213.1.1 Homogeneous RegionsLet 
R : R! R3 be a fun
tion des
ribing the irradian
e (image brightness) of thehomogeneous region R. A

ording to the Di
hromati
 Re
e
tion Model (DRM) [74℄,if P is Lambertian the range of 
R lies on a line (the matte line) in RGB spa
e passingthrough (0; 0; 0). The dire
tion of the matte line des
ribes the intrinsi
 
olor of P ,while the distribution of 
R(R) along it is governed by the 
urvature and orientationof P , as well as the amount of ambient illumination. In pra
ti
e, 
amera noise anddepartures in 
P from perfe
t uniformity makes the matte line a 
luster, and fa
torssu
h as gamma 
orre
tion and the limited dynami
 range of the 
amera 
an introdu
enonlinearities in the 
luster shape.Furthermore, if P is glossy then spe
ularities give rise to a se
ond line (the high-light line) in RGB spa
e that interse
ts the matte line in a skewed-T 
on�guration.The dire
tion of the highlight line is determined by the 
olor of the light sour
e
ausing the spe
ularity. The matte line and the highlight line 
ompletely des
ribe
R under the DRM.For many interesting materials su
h as human skin, ordinary 
lothing fabri
, andautomobile paint, the DRM is a useful, a

urate re
e
tan
e model. In previous work[95℄, we des
ribed a method for modeling a given region R's 
olor by parametrizing
R's distribution along the matte line alone. Before starting tra
king, the user man-ually sele
ts a set of pixels in R that are non-highlighted, non-saturated, and havesigni�
ant intensity variation to get a well-de�ned, linear distribution. Using prin
i-pal 
omponents analysis (PCA) or singular value de
omposition (SVD) [91, 94℄, anellipsoid whose major axis is aligned with the matte line is �t to the sampled pixels'
olor distribution in RGB spa
e.This is a

omplished as follows. Suppose D is a 3 � K matrix of the K RGB



22values 
hosen by the user. The 3 � 3 
ovarian
e matrix for D is de�ned by �ij =PKk=1(Dik � �i)(Djk � �j), where �1 is the mean red 
omponent r of the pixelssele
ted, �2 is the mean green 
omponent g, and �3 is the mean blue 
omponentb. Singular value de
omposition fa
tors any M � N matrix A for whi
h M � Ninto A = UWVT , where U is an M � N 
olumn-orthogonal matrix, W is anN �N diagonal matrix, and V is N �N and orthogonal. For symmetri
 A su
h as
ovarian
e matri
es, U = V.The SVD of � has a geometri
 interpretation that we 
larify by rewriting it as� = RS2RT , where R is a 3�3 rotation matrix and S is a 3�3 s
aling matrix thatde�ne an ellipsoid in R3 . This ellipsoid, whi
h is obtained by s
aling the unit sphereby S, rotating it by RT , and translating it by T = (�1; �2; �3)T , �ts R's matte 
lusterand hen
e models its 
olor. The steps of the pro
ess leading from sample sele
tionto model de�nition are illustrated in Figure 3.2(a-d) for a region 
orresponding tothe front of a so

er player's orange jersey.At the level of a pixel (x; y) within the region R des
ribed by the 
urrent state,the image predi
tion fun
tion � postulates that its 
olor will simply be T. We usethe Mahalanobis distan
e [38℄, whi
h is the number of standard deviations � from apoint to the 
enter of a multivariate Gaussian distribution, to measure the similarity
 between the predi
ted pixel 
olor T and the a
tual 
olor I(x; y) at that image lo
a-tion. The fun
tion 
 plus a representation of the region's geometry will 
onstitute anoverall image similarity metri
, whi
h is dis
ussed below. The Mahalanobis formula-tion results in 
(I(x; y);T) = [(I(x; y)�T)T ��1 (I(x; y)�T)℄1=2. The inverse of the
ovarian
e matrix is easily 
omputed from the SVD as ��1 = RS�1 S�1RT , yieldinga simpli�ed form of the pixel similarity fun
tion as the magnitude of a transformedve
tor: 
(I(x; y);T) = jS�1RT (I(x; y)�T)j.The pixel similarity 
 is shown in graphi
 form for the so

er player's jersey in



23Figure 3.2(e). In it, 
(I(x; y);T) = 0 is represented as a white pixel (gray level 255)at (x; y), 
(I(x; y);T) � 3 as bla
k (gray level 0), and the gray levels of intermediateimage similarities are linearly interpolated.GeometryAnother key 
omponent of the image predi
tion and similarity fun
tions is the geo-metri
 representation of R. For a region, we want to emphasize rough properties su
has lo
ation, s
ale, aspe
t ratio, and orientation over its pre
ise shape. We therefore
hara
terize a region as a re
tangle parametrized by image position x, y, size w, h,and orientation �. The re
tangle C used to represent R is the best-�tting one a

ord-ing to the 
riterion that it minimizes the obje
tive fun
tion fR(C) = jR�Cj+jC�Rj,where jRj is the area of region R and R1�R2 = f(x; y) : (x; y) 2 R1 and (x; y) =2 R2g.A re
tangle is obviously only an approximation to the a
tual boundary of mostregions, but it is a fairly good one for many interesting tra
king targets su
h ashuman body parts (fa
e, torso, and limb segments); balls (so

er, basketball); vehi
lese
tions (
ar sides, air
raft fuselages); and manipulable obje
ts (s
rewdriver handles,
oppy disks, et
.).Furthermore, the re
tangular shape approximation assumes that the pat
h Pgiving rise to R does not rotate out of plane (i.e., out of a plane parallel to the imageplane) or undergo nonrigid deformations. In general, su
h o

urren
es 
an de
reasethe 
loseness of �t between C and R. However, if P is de�ned as the portion ofthe surfa
e S visible to the viewer and S is spheri
al, the tra
ked obje
t 
an rotateout of plane with two degrees of freedom without degrading C's goodness-of-�t. IfS is 
ylindri
al, the tra
ked obje
t has one degree of freedom out of plane. Theseproperties are often useful when tra
king, for example, people's heads, whi
h areroughly spheri
al.
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(a) (e)

R

G

B
R

G

B(b) (
) (d)Figure 3.2: Color-based membership. (a) Initial image with lo
ation of 24� 32 pixelre
tangular sample overlaid; (b) Close-up of 
olor sample; (
) RGB representationof 
olor sample; (d) � = 1 ellipsoid �tted to sample using prin
iple 
omponentsanalysis; (e) Pixelwise 
olor similarity 
 of initial image to model via Mahalanobisdistan
e indu
ed by ellipsoid.
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C

F

(a) (b)Figure 3.3: Homogeneous Region. (a) The geometry of a region for an arm tra
kerwith the positive 
enter C and inhibitory frame F labeled; (b) Pixel similarity 
 ofthe image to the modeled arm skin 
olor, with R's geometry overlaid. (Input image
ourtesy of J. Ma
Cormi
k)Image likelihoodThe boundary of R is not known a priori, so two heuristi
s are used to identify it:(1) pixels for whi
h 
 is low are likely to be in R; and (2) pixels for whi
h 
 is highare likely to be outside R. By this logi
 the re
tangle-�tting obje
tive fun
tion fis minimized by minimizing the sum of 
 over all pixels inside C while maximizingit outside. EÆ
ien
y allows only a relatively small area of the image outside C tobe analyzed, and the re
e
tan
e 
ontrast assumed in the se
ond heuristi
 betweenR and its surroundings is only reasonable lo
ally. The lo
al image neighborhoodof the positive 
enter C is delineated by a re
tangular border F whi
h we 
all theinhibitory frame. To balan
e its in
uen
e on the re
tangle-�tting obje
tive fun
tionf , F is sized so that jF j = jCj while maintaining the same aspe
t ratio. This meansthat wF = wCp2 and hF = hCp2. A good but suboptimal �t of a re
tangle and itsframe to a human arm region is shown in Figure 3.3.These 
onditions are satis�ed by the following expression for the 
onditional prob-



26ability of a homogeneous region:phregion(I jX) = sig ( 1�2hregion Xx;y2C[F a(x; y) �  hregion(x; y)) (3.1)where sig (x) = 11+e�x and a(x; y) is the fra
tion of the total area jRj of the regionR represented by the pixel at (x; y) (e.g., 1jRj if every pixel is 
ounted|di�erent ifsubsampling or adaptive sampling is used). �2hregion is a term that represents thevarian
e of the sum; explanations of its purpose and the values assigned to it forhomogeneous regions and the other modalities are given at the end of the 
hapter.The degree to whi
h ea
h pixel in the region �ts the membership model is given by hregion (x; y) = 8><>: �
(I(x; y);T) if (x; y) 2 C
(I(x; y);T) if (x; y) 2 F (3.2)Referring ba
k to the terms de�ned in Chapter 2, the image predi
tion fun
tion� for regions posits an image 
onsisting of a re
tangle of 
olor de�ned by 
 framedby a 
ontrasting 
olor, with lo
ation, size, and orientation des
ribed by the state X.3.1.2 Textured RegionsA textured region is de�ned as a region whose pat
h P has an intrinsi
 
olor pattern
P (P ) with signi�
ant intensity gradients both verti
ally and horizontally. A stronggradient allows sum-of-squared-di�eren
es (SSD) methods [80, 109, 51℄ to su

essfullyestimate the region's geometri
 and photometri
 transformations. Here we limit ourattention to aÆne geometri
 transformations of an intensity pat
h whose proje
tionis approximated by a re
tangle.We write 
R(R) to denote the pattern, similar to a homogeneous region's 
olorparametrization, by whi
h a textured region R is re
ognized. We model 
R(R) by



27having the user sele
t a re
tangular image sample IR of the target 
alled the referen
eimage before tra
king is to begin. An example of the sele
tion step is shown inFigure 3.4(a) and the resulting referen
e image in Figure 3.4(
).At any moment during tra
king, the state X of the obje
t spe
i�es the shape ofR as a warp of the referen
e image. That is, X postulates that the 
urrent image
ontains a shifted, rotated, s
aled, and sheared version of IR, whi
h we 
all thepredi
ted image IP . The image predi
tion fun
tion � thus embeds IP in the 
urrentimage at the appropriate lo
ation. IP 
an be derived from X by performing an aÆnewarpA (assumed part of the state) with bilinear interpolation [43℄ on IR. In pra
ti
e,the image inside the re
tangle predi
ted by X is inversely warped using A�1 to geta 
omparison image IC that is the same size as the referen
e image. An example ofthe predi
ted shape and lo
ation for the textured region referred to above is shownin Figure 3.4(b); its asso
iated 
omparison image is depi
ted in Figure 3.4(d).The gradient of textured regions makes feature 
omparison within regions suÆ-
ient to measure s
aling, obviating the inhibitory frame ne
essary for homogeneousregions. An SSD formulation expresses the 
onditional probability of the image Igiven the state X as inversely proportional to the di�eren
e between the referen
eimage and the 
omparison image:ptregion(I jX) = exp (� 1�2tregion Xx;y2IR a(x; y) �  tregion(x; y)) (3.3)where a(x; y) is the fra
tion of the total area of the referen
e image jIRj representedby the pixel at (x; y) and tregion(x; y) = (IR(x; y)� IC(x; y))2 (3.4)An image representing the residual for the example is shown in Figure 3.4(e).
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(a) (b)
(
) (d) (e)Figure 3.4: Textured Region. (a) Sele
ting the referen
e image for a fa
e tra
ker;(b) One possible state; (
) Referen
e image IR from (a); (d) Normalized 
omparisonimage IC for the state in (b); (e) Di�eren
e image jIR � IC j.



293.2 SnakesWe de�ne a snake [18, 117℄ as the proje
tion of a 
ontinuous 
ontour lying on asmooth surfa
e onto the image. Analogous to the nomen
lature of pat
h and regionin Se
tion 3.1, we will use the term 
ontour ex
lusively to refer to the 
urve on thesurfa
e in R3 and the term snake for its image proje
tion. The 
ontour may beeither 
losed or open. At ea
h point along its length the 
ontour has a type that fallsinto one of the following 
ategories: (a) it delineates an edge on the surfa
e betweenregions with 
ontrasting properties, (b) it follows the silhouette of the surfa
e againsta 
ontrasting ba
kground, or (
) it tra
es a line on the surfa
e that 
ontrasts with thelo
al properties on both sides. Whi
hever the type of the 
ontour, the 
ontrastingproperties that de�ne it may be intensity, 
olor, texture, or some more 
ompli
atedvisual quantity. In this dissertation we assume that the 
ontrast takes the form ofan intensity di�eren
e, permitting the use of standard edge dete
tion algorithms.In the next two subse
tions we des
ribe two edge dete
tion te
hniques and amethod of snake shape representation.3.2.1 Edge Dete
tionA prerequisite for �tting a shape model to an intensity disparity 
urve is to �ndthe edges in the image. If the image is 
olor, it is �rst 
onverted to grays
alebefore performing an edge dete
tion operation. For intensity, we use the lumi-nan
e 
omponent Y of the standard RGB ! Y UV 
olorspa
e 
onversion givenby Y = 0:299R+ 0:587G+ 0:114B [93℄.Numerous approa
hes to extra
ting edges from images have been investigatedin the vision literature. An in-depth dis
ussion of the pros and 
ons of the variousmethods is beyond the s
ope of this dissertation, so we will simply present two that



30we have used su

essfully. The Sobel edge operator [111℄ is less sophisti
ated but hasthe virtue of speed, while the Canny algorithm [23℄ is a widely-a

epted ben
hmarkthat requires 
onsiderably more pro
essing. The two methods are des
ribed below.SobelSobel edge dete
tion [111℄ approximates the gradient of the image intensity fun
tionrI = ( �I�x ; �I�y ) = (Ix; Iy) by 
onvolving the image with a horizontal mask Sx andverti
al mask Sy su
h that Ix � Sx 
 I and Iy � Sy 
 I.Ea
h 
onvolution mask is separable into the produ
t of 1-D derivative masksDx = (�1; 0; 1),Dy = (�1; 0; 1)T and 1-D triangular smoothing masks Tx = (1; 2; 1),Ty = (1; 2; 1)T as follows:
Sx = TyDx = 0BBBB��1 0 1�2 0 2�1 0 1

1CCCCA ; Sy = DyTx = 0BBBB��1 �2 �10 0 01 2 1
1CCCCA (3.5)The gradient magnitude of I indi
ates the strength of an edge and is approximatedby jrIj �p(Sx 
 I)2 + (Sy 
 I)2. It 
an be thresholded to eliminate weak edges bysetting jrI(x; y)j = 0 if jrI(x; y)j < � and binarized by setting all values above � tosome non-zero 
onstant.The result of Sobel edge dete
tion on a grays
ale image of a person's head ob-tained from an infrared 
amera is shown in Figure 3.5(b).CannyCanny edge dete
tion [23℄ resembles the Sobel method with extensive post-pro
essing.The image is �rst 
onvolved with a smoothing mask approximating a Gaussian withstandard deviation �. The Gaussian mask G is separable into horizontal and verti
al



311-D masks Gx;Gy (where Gx = GTy ) whose widths depend on �. Trun
ating the tailof the Gaussian to 0 at 2:5 � yields, for example, a mask width of 7 for � = 1:0 andGx = (0:004; 0:054; 0:242; 0:400; 0:242; 0:054; 0:004). Using a Gaussian instead of athe Sobel triangular smoothing mask is superior from a �ltering standpoint, thoughsomewhat more expensive.Next, the blurred image G
 I is di�erentiated by 
onvolving it with the deriva-tive masks Dx and Dy. This is the same as di�erentiating the Gaussian mask and
onvolving the result with the image. Spe
i�
ally, G0x = Dx
G and G0y = Dy
G,yielding Ix � G0x 
 I and Iy � G0y 
 I. The magnitude of the estimated gradient is
omputed as above: jrIj �q(G0x 
 I)2 + (G0y 
 I)2.Due to the smoothing, image edges are 
orrelated with rounded ridges in thegradient magnitude fun
tion rather than sharp spikes. The next step of the Cannyalgorithm, 
alled non-maximal suppression, attempts to remove all but the tops ofthese ridges for more pre
ise edge lo
alization. Intuitively, we want to keep onlythose pixels whose edge strengths are higher than those of their two neighbors per-pendi
ular to the dire
tion of the edge (pixels with edge strengths of 0 are thrown outimmediately). The 
oordinates of those neighbors for a pixel (x; y) are (x+ u; y+ v)and (x�u; y�v), where (u; v) = ( Ix(x;y)jrI(x;y)j ; Iy(x;y)jrI(x;y)j) is the unit ve
tor along the gradi-ent dire
tion. (x+ u; y+ v) and (x� u; y� v) are not integer 
oordinates in general,so ea
h of their gradient magnitudes must be interpolated from the four surround-ing integer 
oordinates, one of whi
h is always (x; y). Several di�erent interpolationmethods that trade eÆ
ien
y for a

ura
y are 
ommonly used; the most a

urate isbilinear interpolation [43℄.Finally, a form of thresholding 
alled hysteresis is applied to remove weak edges.Rather than a �xed threshold as with the Sobel te
hnique, upper and lower thresholds�high and �low, respe
tively, are employed. Pixels (x; y) for whi
h jrI(x; y)j � �high



32are a

epted immediately, while pixels (x; y) for whi
h jrI(x; y)j < �low are reje
tedimmediately. A pixel whose strength is between the two thresholds is only a

eptedif it is 
onne
ted (in the eight-
onne
ted sense) to a pixel above �high by a sequen
e ofpixels above �low. This redu
es the in
iden
e of edges being broken up, or streaking,due to minor variations in gradient magnitude around a single threshold. �high and�low, whi
h are in units of edge strength, are typi
ally derived from two other quan-tities �̂high and �̂low that the user sets dire
tly. �̂high 2 [0; 1℄ is a per
entile thresholdon the distribution of edge strengths of the pixels surviving the non-maximal sup-pression step. A value of �̂high = 0:8, for example, indi
ates that �high should be setto whatever gradient magnitude is greater than 80% of the gradient magnitudes ofunsuppressed pixels. �̂low 2 [0; 1℄ is just the fra
tion of this number that �low shouldbe set to: �low = �̂low �high.The result of Canny edge dete
tion is a binary image of edges and non-edges. Anexample output based on the IR head image used in the Sobel se
tion is shown inFigure 3.5(
).3.2.2 Shape RepresentationWe represent a snake as a periodi
 or nonperiodi
, uniform, 
ubi
 B-spline [18, 56,120℄ 
onstrained to deform aÆnely. The spline approa
h allows an arbitrarily de-tailed des
ription of the shape of the tra
ked obje
t, while the aÆne 
onstrainteÆ
iently 
aptures the snake's degrees of freedom if its asso
iated 
ontour is a rigid,planar 
urve restri
ted to translation, s
aling, and in-plane rotation. Allowing un-
onstrained deformations of the snake 
an 
ause mistra
king be
ause it dis
ardsinformation about the 
orre
t relative lo
ations of snake segments. More 
omplexsituations su
h as spa
e 
urves and perspe
tive and nonrigid transformations, how-ever, 
an be handled straightforwardly by adding dimensions to the state [18℄.



33Formally, a uniform, 
ubi
 B-spline is a 
urve � 
omprising N equal-length 
ubi
polynomial 
urve segments �i between whi
h there is se
ond-order (C2) 
ontinuity.The ith 
urve segment is de�ned parametri
ally over 0 � u � 1 as a blend of four
ontrol points pi; : : : ;pi+3 a

ording to:�i(u) = 4Xk=1 Bk(u)pi+k�1 (3.6)Using the C2 
ontinuity 
ondition between 
urve segments plus a 
onstraint thatP4k=1Bk(u) = 1 for 0 � u � 1 (i.e., every point along a 
urve segment is a weightedaverage of the segment's 
ontrol points), we 
an dedu
e four unique 
ubi
 blendingfun
tions that are valid for any 
urve: B1 = 16(1 � u)3, B2 = 16(3u3 � 6u2 + 4),B3 = 16(�3u3 + 3u2 + 3u+ 1), and B4 = 16u3. Written in matrix form, Equation 3.6be
omes:
�i(u) = 16 (u3 u2 u 1) 0BBBBBBB��1 3 �3 13 �6 3 0�3 0 3 01 4 1 0

1CCCCCCCA
0BBBBBBB� pipi+1pi+2pi+3

1CCCCCCCA (3.7)
Let P = (X;Y) = (p1; : : : ;pM)T be a ve
tor of the entire B-spline's 
ontrolpoints. For periodi
 
urves, M = N ; for nonperiodi
 
urves, M = N +3 (assuming a
ubi
 B-spline). The analog of the parameter u for the length of the whole 
urve is s,where 0 � s � N . A ve
tor of global blending fun
tions G(s) = (G1(s); : : : ; GM(s))serves to transform s into its lo
al equivalent u and pi
k out the supporting lo
alblending fun
tions Bi a

ording to �(s) = G(s)P. Ea
h Gi is de�ned as:
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Gi(s) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
B4(s0 � i + 4) i� 4 � s0 < i� 3B3(s0 � i + 3) i� 3 � s0 < i� 2B2(s0 � i + 2) i� 2 � s0 < i� 1B1(s0 � i + 1) i� 1 � s0 < i0 otherwise

(3.8)
where s0 = s if � is nonperiodi
 and s0 = s� 4 if � is periodi
 and s �M � 3.Sin
e the snake may deform or move over multiple video frames, we index the
urve and hen
e its 
ontrol points by time: �(s; t) = G(s)P(t). The initial 
on�g-uration of the 
ontrol points P(0) = (bX; bY) is derived from a user-sele
ted set �̂
onsisting of n points along the 
urve whi
h we 
all the shape template. A simplemethod for doing this is to take the shape template points to be the endpoints of�'s 
urve segments. For nonperiodi
 splines, the user 
hooses n = N + 1 roughlyequally-spa
ed points so that �̂ = (�(0; 0);�(1; 0); : : : ;�(N; 0))T . The 
onditionthat the 
urve endpoints 
oin
ide with the �rst and last 
ontrol points is added toensure a unique solution, yielding the following set of simultaneous equations forP(0): 0BBBBBBBBBBB�

�(0; 0)�(0; 0)...�(N; 0)�(N; 0)
1CCCCCCCCCCCA =

0BBBBBBBBBBB�
1 0 � � � 0G1(0) G2(0) � � � GM(0)... ... ...G1(N) G2(N) � � � GM(N)0 � � � 0 1

1CCCCCCCCCCCA
0BBBBBBBBBBB�

p1(0)p2(0)...pM�1(0)pM(0)
1CCCCCCCCCCCA (3.9)

For a periodi
 
urve, one fewer point in the shape template is required to spe
ifyn = N segments, making �̂ = (�(0; 0);�(1; 0); : : : ;�(N � 1; 0))T . Also, there are



35two fewer unknowns and thus no need for extra 
onditions. The periodi
 analog ofEquation 3.9 is thus �̂ = (G(0); : : : ;G(N � 1))T P(0).The aÆne representation Q(t) of the snake is derived from the B-spline represen-tation P(t) as follows [18℄:Q(t) =M2640B�X(t)Y(t)1CA�0B�bXbY1CA375 (3.10)where M = (WT HW)�1WT H (3.11)W is an aÆne basis de�ned as:W = 0B�1 0 bX 0 0 bY0 1 0 bY bX 01CA (3.12)where 0 = (0; : : : ; 0)T , 1 = (1; : : : ; 1)T are M -ve
tors, and H is the metri
 matrix[16℄ given by: H = 0B�PNs=0GT (s)G(s) 00 PNs=0GT (s)G(s)1CA (3.13)Variations in the snake's 
ontrol points over time are des
ribed by an aÆne trans-formation of the shape template's 
ontrol points:0B�X(t)Y(t)1CA�0B�bXbY1CA =WQ(t) (3.14)Thus, the full B-spline 
an be dedu
ed from Q, but is restri
ted to a smaller-dimensional aÆne subspa
e of the 
on�gurations than would be possible if P were
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onstrained.3.2.3 Image likelihoodThe image predi
tion fun
tion � for snakes hypothesizes a 
urve derived from Qalong whi
h there is an intensity disparity. To 
ompute the image similarity betweenthe image and this predi
tion, we de�ne p(I jX) by adapting the formula for \p(z jx)"as des
ribed in [59℄.For ea
h of the n segment borders 
omprising the B-spline parametrized by aparti
ular Q, edge dete
tion is performed along a line of length L (typi
ally 10-20 pixels) that is normal to and bise
ted by the 
urve at that point. Let �(i) bethe image lo
ation of the 
urve at segment i, where 0 � i < n. Using the Cannyalgorithm, we let z(i) be the lo
ation of the edge segment along the ith normal thatis found nearest to �(i). For the Sobel method, z(i) is the strongest edge alongthe normal whose strength is over the threshold � . Any failure to �nd a suitableedge is noted and dealt with as des
ribed in Equation 3.16 below. The shape ofa nonperiodi
 snake and the Sobel edges dete
ted on its normals are illustrated inFigure 3.5(d).Assuming the state X in
ludes Q, we express the likelihood as:psnake(I jX) = exp (� 1�2snake n�1Xi=0 l(i) �  snake(i)) (3.15)where l(i) is the fra
tion of the total length j�j of the snake represented by normali (e.g., N=j�j if the normals are evenly spa
ed). The degree to whi
h the lo
ation ofea
h dete
ted edge �ts the shape model is given by
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(a) (d)

(b) (
)Figure 3.5: Snake. (a) Human head (infrared image); (b) Sobel edge dete
tion onhead image (� = 45; brightness at pixel (x; y) is linearly interpolated after thresh-olding between jrI(x; y)j = 0 as white and jrI(x; y)j � 255 
lamped to bla
k); (
)Canny edge dete
tion (� = 2:0, �̂low = 0:25, �̂high = 0:75); (d) State of a sample snakehead tra
ker. Cir
les on 
urve normals indi
ate lo
ations of strongest Sobel edges.



38
 snake(i) = 8><>: j�(i)� z(i)j if an edge is found� otherwise (3.16)� serves as a penalty value for  (i) when there is no edge dete
ted along the normalto the 
urve at segment i.3.3 AddendaA fa
tor in the 
onstru
tion of the image likelihood that deserves s
rutiny is thevalue of the varian
e �2 for ea
h modality. The purpose of �2 is to ensure thatthe ranges of the fun
tions sig in Equation 3.1 and exp in 3.3 and 3.15 are withinma
hine pre
ision. To see the ne
essity of this, observe that the  term of ea
h ofthe modalities has a natural s
ale depending on its de�nition. For textured regions,the value of  tregion is a squared pixel intensity di�eren
e ranging from 02 = 0 to2552 = 65025. For homogeneous regions,  hregion is a Mahalanobis distan
e betweenpixel 
olors whi
h 
an range from 0 to roughly 10 depending on a region's 
olorde�nition. A snake's  snake is a distan
e in the image between a predi
ted andmeasured edge; with the penalty term � it ranges from 0 to � (whi
h is usually 10-30). Appropriate modality-spe
i�
 values for �2 
an be empiri
ally derived|e.g.,by averaging the inverse of the mean  for a modality over many obje
t models,samples, and images|but we simply use reasonable approximations: �2tregion = 4000,�2hregion = 25, and �2snake = 400.The ellipse-�tting idea for homogeneous regions is easily adaptable to grays
aleimages by 
arrying out one-dimensional prin
ipal 
omponents analysis (PCA) onthe sampled pixel intensities. Su
h grays
ale images might be the output of a depth-estimating stereo algorithm [31, 70℄. In order to redu
e sensitivity to variations in



39illumination intensity, we may also use a similar method on the two 
hrominan
edimensions of 
olor spa
e representations su
h as Y UV [93℄. Computer graphi
sor syntheti
 image sour
es where a region's 
olor may be perfe
tly uniform are notamenable to statisti
al te
hniques su
h as PCA. In this 
ase it is straightforward tomodel 
olor similarity as simple Eu
lidean distan
e in 
olor spa
e.Variations on the method of �tting an ellipsoid to a 
olor sample in
lude usingrobust methods [85℄ for dealing with outliers in the re
e
tan
es of sampled pixels(su
h as the logo on the player's shirt in Figure 3.2). Instead of re
tangles forrepresenting shape of regions (homogeneous and textured), we might use periodi
B-spline outlines for more detail. This would require a simple generalization of thenotion of the inhibitory frame for homogeneous regions.For all of the modalities dis
ussed in this 
hapter, the model of the image pre-di
tion fun
tion �(X) negle
ts depth-dependent fo
us, motion blur, and other su
hphotorealisti
 fa
tors. Ignoring the e�e
ts of these phenomena has a negligible impa
ton the quality of tra
king for the image sequen
es we use.



Chapter 4
Single Obje
t Tra
king
In this 
hapter we dis
uss te
hniques for tra
king single, uno

luded, atomi
 obje
ts.We use the term atomi
 in the sense of an atom being the smallest indivisible unit,meaning that the obje
t is identi�ed by only one of the modalities presented in theprevious 
hapter. The 
ombination of an identifying modality and the observableparameters of that modality (size, 
olor, shape, et
.) 
onstitute an attribute of anobje
t.In addition to solitary obje
ts, the methods we 
over 
an be applied to tra
kingmultiple obje
ts simultaneously, but with degraded performan
e when similar obje
tsare 
lose to one another or the obje
ts o

lude one another. Moreover, if the obje
tsto be tra
ked are physi
ally linked (e.g., parts of a human body) or are identi�ed bymultiple attributes, these methods ignore information provided by the inter-obje
t
onstraints or extra attributes that may provide greater robustness. Expli
it ap-proa
hes to multiple obje
t tra
king are presented in Chapter 5, and 
onstrainedand multi-attribute tra
king are investigated in Chapter 6.Referring ba
k to the exposition in Chapter 2, we 
ast the problem of visuallytra
king an atomi
 obje
t as one of following the area of the image that is the40



41MeasurementGenerationti?Asso
iationProbabilitiesti?StateEstimationtiFigure 4.1: State update algorithm pipeline for a single PDAF tra
kerbest mat
h to it. The Kalman �lter predi
ts the most likely lo
ation and other
hara
teristi
s of this image area, indi
ating where to begin sear
hing for it. In the�rst se
tion of this 
hapter, we dis
uss methods for �nding and parametrizing a setof hypotheses for good mat
hes. The best mat
h thus found is suitable for input toa standard Kalman �lter as the measurement. Later in the 
hapter we present theProbabilisti
 Data Asso
iation Filter (PDAF) [5℄, an extension to the Kalman �lterthat 
onsiders other highly likely alternatives.4.1 The Measurement Pro
essThe measurement extra
tion pro
ess is essentially a sear
h for lo
al maxima of theimage likelihood p(I j X) in the neighborhood of bX, the state predi
ted from the�lter at time t. The geometri
 
hara
teristi
s of the image areas 
orrespondingto these maximally likely states are derived as measurements Z. There are manyapproa
hes to this problem, ea
h of whi
h trades o� speed for thoroughness. Perhapsthe simplest 
lass of te
hniques, whi
h we 
all gradient as
ent methods, follows fromthe 
ondition that p(I jX) is di�erentiable. Randomized methods su
h as simulated



42annealing [87℄ whi
h sample p(I jX) at dis
rete lo
ations, sequentially or in parallel,have proven su

essful at �nding global maxima of multimodal fun
tions and do notrequire di�erentiation in order to work. Alternatives to random sampling in
ludesampling over a regular grid in state spa
e or using a quasi-random method su
h asAntonov-Saleev [94℄ to a
hieve a Poisson-like distribution and thus avoid dupli
ationof e�ort by samples that are too 
lose to one another.In this 
hapter we use either gradient as
ent or random sampling methods formeasurement extra
tion. The basi
s of ea
h approa
h are 
overed in the next twosubse
tions. We have found that a hybrid of the two methods yields good results. Analgorithm for 
ombining these te
hniques and an analysis of why su
h a 
ombinationmay be ne
essary or preferable are presented in the next 
hapter.4.1.1 Gradient As
entCommon gradient algorithms in
lude steepest as
ent and 
onjugate gradient [94℄.These methods work as follows. Let the fun
tion to be maximized be f(X) = p(I jX),and the starting point of the sear
h be p0 = Z, the 
urrent predi
ted state. The aimof the gradient algorithms is to 
onstru
t a sequen
e of points fpig that 
onvergeto a maximum of f that is lo
al to p0. Ea
h new point pi+1 is derived from itsprede
essor a

ording to pi+1 = pi+�i gi, where gi is a dire
tion derived (indire
tly,if using the 
onjugate method) from the gradient rf(pi). �i is a step size that 
anbe 
omputed from minimizing f along an interval of the line passing through piin the dire
tion of gi, or it may simply be 
onstant. The algorithm is terminatedwhen jf(pi+1)� f(pi)j � Æ for some small Æ or the number of steps taken rea
hes athreshold N .While 
onjugate gradient uses derivative information on f for eÆ
ien
y, Powell'smethod [94℄ is a related algorithm that does not. Powell's method is sometimes



43used in this dissertation, espe
ially for the modi�ed version of p(I jX) introdu
edin Chapter 5. Unless otherwise noted, though, the gradient as
ent te
hnique used is
onjugate gradient.We will now des
ribe some spe
i�
 methods of implementing gradient as
entfor the tra
king modalities introdu
ed in Chapter 3. Assuming that the obje
-tive fun
tion f(X) 
an be evaluated for any parti
ular state, we 
an always ap-proximate the partial derivative of f with respe
t to some parameter x in X by�f�x � f(X+�x)�f(X��x)2�x , where �x is a ve
tor that is all 0's ex
ept for a small num-ber �x assigned to the x parameter. The gradient 
an easily be 
onstru
ted fromthese approximated derivatives. For 
onsisten
y, we use this method of gradient ap-proximation for all three modalities, although some tra
king modalities permit theuse of more dire
t gradient as
ent methods.For example, a method 
ommonly used in snake tra
king (introdu
ed in [117℄and extended to the aÆne 
ase in [18℄) is to simply take the lo
ations of the bestedges z(0); : : : ; z(n� 1) found along the sear
h normals of the predi
ted snake, usethese to parametrize a new B-spline, and 
reate a measurement from this B-spline.The maximal motion that 
an be estimated in this manner obviously depends on thelength of the normals.The motion of textured regions 
an be dire
tly estimated by solving the imagebrightness equation Ixu+Iyv+It = 0 [51, 54℄ (Ix; Iy are the spatial image derivatives,It is the temporal image derivative, and u; v are pixel velo
ities within the part of theimage of interest) subje
t to, for example, an aÆne 
onstraint [9℄. This approa
h 
anbe extended to estimate larger motions by using a multi-resolution image pyramidto iteratively move from 
oarse to �ne estimates [9℄.Gradient methods are often used to eÆ
iently obtain a single best measurementwith whi
h to update a tra
king �lter. A number of assumptions must be met to



44ensure their su

essful appli
ation. First, gradient as
ent works best when p(I jX) isunimodal. The user must also hope that the obje
t state is 
hanging slowly enoughthat the �lter 
an keep up if the algorithm is terminated after a maximum number ofsteps (meaning that it may only get some fra
tion of the way to the true maximumfor ea
h new image), or if the posterior is multimodal that the predi
ted state will notwind up in another basin of attra
tion. Another assumption if there is multimodalityis that there will not be signi�
ant interferen
e between modes, su
h as two modes(the 
orre
t one and an in
orre
t one) merging and splitting, 
reating the possibilityof the �lter making the wrong 
hoi
e after the split.These diÆ
ulties with gradient methods are why in many situations we favor otheralgorithms that allow for faster state 
hanges and multiple modalities in the stateposterior. These methods, though retaining the notion of lo
ality around a predi
tedstate, shade into global optimization algorithms. We use gradient as
ent methodsfor measurement generation in some of the examples at the end of this 
hapter inorder to 
ompare their performan
e to the randomized peak �nder des
ribed in thenext se
tion.4.1.2 Random samplingFor speed and simpli
ity, we use a measurement generation method whi
h we 
allmeasurement sampling, adapted from the fa
tored sampling approa
h of the Conden-sation algorithm [59℄ (the Condensation algorithm is dis
ussed in detail in Chapter 7).Intuitively, we sample p(I jX) in the neighborhood of the 
urrent predi
ted state bX,sele
t those state samples most likely to be on its nearby peaks, and 
onvert themto measurements.The random sampling method of measurement generation for a given tra
kingmodality obtains measurements by pi
king points from a distribution determined by



45the prior on the state p(X), 
omputing their image likelihoods p(I j X), throwingaway all but the top fra
tion, and deriving the measurement parameters of whatremains. The form of the prior p(X) 
an be determined by learning from examplesif desired; we use a hand-tuned Gaussian.In pra
ti
e, N samples are taken from a normal distribution in the target's statespa
e X 
entered on its 
urrent predi
ted state bX. A hypotheti
al prior and one setof samples derived from it are diagrammed in Figures 4.2(a) and (b). N and the
ovarian
e of the distribution�X are 
hosen to give adequate 
overage to a \tra
kingwindow" about the target. Furthermore, sampling from the normal distributionensures that the image likelihood fun
tion is examined more pre
isely where it isexpe
ted to be highest. p(I jX) is 
omputed for ea
h sample by s
oring the degree of�t between the hypothesized target and the 
urrent image, as shown in Figure 4.2(
).Finally, a winnowing step sorts the samples by their likelihoods and keeps only the nmost likely ones (n� N) to be 
onverted to measurements for input to the tra
king�lter. This last step is illustrated in Figure 4.2(d).Several enhan
ements to this basi
 pro
edure are possible. First, we 
ould enfor
ea minimum distan
e in state spa
e between samples to redu
e the 
han
e of multiplesamples being drawn from the same underlying image feature. Also, performinggradient as
ent on the samples, either before or after winnowing, would improvetheir quality and 
onsisten
y. Both of these steps are optional at this stage be
auseof the PDAF's toleran
e of multiple samples, but we show in the next 
hapter thatthey are ne
essary for joint tra
king.4.1.3 Measurement TerminologyWe use the following nomen
lature to des
ribe state and measurement parametersubspa
es for homogeneous and textured regions as well as snakes: X indi
ates
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(a) (b)

(
) (d)Figure 4.2: Measurement generation. (a) Hypotheti
al prior distribution; (b) Priordistribution on state with N = 500 samples; (
) Hypotheti
al image likelihood fun
-tion with samples; (d) Image likelihood fun
tion with n = 50 best samples.



47the range of horizontal image lo
ations of the target, Y is the range of its verti
alimage lo
ations, � is its possible image orientations in radians, and S is its possibles
ales as a fra
tion of its initial size. Thus, image lo
ation variables in the stateare denoted by x 2 X and y 2 Y , orientations by � 2 �, and s
ales by s 2 S.Other possible state parameters to be estimated from these measurable quantities arevelo
ity and a

eleration. Horizontal image velo
ity and a

eleration, for example,are indi
ated by _x 2 _X and �x 2 �X, respe
tively. In all of the examples in thisdissertation, an obje
t's measurement spa
e is simply its state spa
e without anytemporal parameters.Be
ause the state of an obje
t may be as simple as, for example, its image lo
ation(x; y), we should note that the image likelihood p(I jX) is impli
itly 
onditioned onother obje
t information. The 
olor of a homogeneous region, the referen
e imageof a textured region, and the 
ontrol points of a snake all go into the 
al
ulationof the image likelihood and yet are not expressed expli
itly in the state. Moreover,what we 
all an obje
t's geometri
 image pro
essing parameters are also part of this
al
ulation. The geometri
 image pro
essing parameters are those that totally de�nethe shape of an obje
t and are thus ne
essary to 
ompute p(I jX) for their respe
tivemodalities. For a region, they are the position ~x; ~y, size ~w; ~h, and orientation ~� ofthe re
tangle, and for a snake they are the six aÆne parameters (~q0; ~q1; : : : ; ~q5) inQ. If not in
luded in the state, the geometri
 parameters must be a

ounted for viasome other means.As a matter of implementation, it is useful to de�ne a formalism for referring tothese geometri
 parameters. This formalism, whi
h we 
all the measurement key, isalso used as a means of 
onstraint enfor
ement in Chapter 6. The measurement keyK for a parti
ular obje
t modality is a ve
tor of fun
tions ki, where k : X ! R . Ea
hof these fun
tions is named after the geometri
 parameter it 
orresponds to. The



48measurement key is di�erent depending on the tra
ker modality and state spa
e, butin general we de�ne Khregion(X) = Ktregion(X) � (~x(X); ~y(X); ~w(X); ~h(X); ~�(X))Tand Ksnake � (~q0(X); ~q1(X); ~q2(X); ~q3(X); ~q4(X); ~q5(X))T .We now explain the details of K using regions as an example. When state spa
eX 
ontains X � Y �W �H � �, the fun
tions in K simply sele
t the appropriateentry of X 2 X . If, for example, X = (x; y; w; h; �)T , then ~x(X) = x, ~y(X) = y, andso on. If state spa
e does not 
ontain all of the geometri
 image pro
essing variables,though, then some are left unspe
i�ed by this method. Suppose X = X � Y .In this 
ase 
onstants are used for the unspe
i�ed parameters|spe
i�
ally, theirinitial, user-
hosen values: ~w(X) = �w, ~h(X) = �h, and ~�(X) = ��. This fun
tionalformulation also allows s
ale s (initially 1) and other quantities to be state variables.If X = X�Y �S, then ~x(X) = x, ~y(X) = y, ~w(X) = s �w, ~h(X) = s�h, and ~�(X) = ��.An analogy is easily drawn between the geometri
 parameters of regions and theaÆne representation of snakes. ~q0 and ~q1 are the relative translational 
omponentsof the aÆne parameters, and thus are equal to ~x� �̂x and ~y � �̂y, respe
tively (�̂xis the mean x value of the initial positions of the B-spline template points and �̂yis their mean y value). ~q2; ~q3; ~q4, and ~q5 are the rotational and s
aling parameters ofthe B-spline. They are 
oeÆ
ients of a 2 � 2 matrix � ~q2 ~q5~q4 ~q3 � = � s 
os(�) � sin(�)sin(�) s 
os(�) � thattakes the initial shape of the B-spline to its 
urrent size and orientation. The snake'sangle � 
an thus be expressed as sin�1(~q4) and its s
ale s as ~q2= 
os(�). Hen
eforth,we will use the names of the geometri
 parameters of regions with the knowledgethat we 
an 
onvert ba
k and forth to the snake parameters.Although the random sampling pro
edure for measurement generation uses thefull state spa
e, as noted in the previous 
hapter our model of image formation doesnot 
urrently a

ount for an obje
t's velo
ity. Therefore velo
ity parameters in thestate never �gure in the 
al
ulation of the geometri
 parameters des
ribed above or,
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onsequently, the image likelihood p(I jX). This means that the temporal dimensionsof state samples are irrelevant to the image likelihood. In our results, we ignore themby referring to only the non-temporal dimensions of the state sampling 
ovarian
e�X . As a matter of shorthand, when state spa
e in
ludes velo
ity parameters su
has, for example, X � Y � _X � _Y , we des
ribe only the relevant part of the sampling
ovarian
e, or �X = � �2X 00 �2Y �.Homogeneous RegionsThe pro
ess of random sampling to obtain measurements is illustrated for homoge-neous regions in Figure 4.3. The input image is the so

er player from the previous
hapter, and we would like to tra
k his orange jersey. Allowing translation, rotation,and s
aling of the re
tangle �t to the jersey, state spa
e is X = X � Y � �� S. InFigure 4.3(b-
), there are a large number of samples N = 2000 and measurementsn = 100, with a large sampling 
ovarian
e about the predi
ted state in order toexplore most of the image: �X = � 4000 0 0 00 4000 0 00 0 0:1 00 0 0 0:05 �. In Figure 4.3(d-e), the sampling
ovarian
e is more fo
used: �X = � 400 0 0 00 400 0 00 0 0:02 00 0 0 0:01 �. The number of samples N = 500and measurements n = 10 are also smaller, and as a result the player's orange so
ksare not found, making the measurement distribution unimodal instead of bimodal.For 
ertain image 
onditions, a fast approximation to state sampling for homo-geneous regions is o�ered by 
onne
ted 
omponents (CC) analysis. This pro
edurefollows from the observation that the moments of the largest 
onne
ted 
omponentsof pixels for whi
h 
(I(x; y)) is high frequently 
orrespond to peaks in the image like-lihood fun
tion p(I jX). The pro
ess, illustrated in Figure 4.4, approximates p(I jX)whenX 
onsists solely of position by 
al
ulating 
(I(x; y)) for ea
h image pixel (x; y).We then threshold these likelihoods to remove everything but the tops of the peaksand perform some number E of morphologi
al expansion operations to join pixels
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(a)

(b) (
)

(d) (e)Figure 4.3: Random sampling for homogeneous region measurement generation. (a)Predi
ted state; (b) Samples with large 
ovarian
e (about predi
ted state); (
) Mea-surements for large 
ovarian
e sample; (d) Samples with small 
ovarian
e (aboutsame predi
ted state); (e) Measurements for small 
ovarian
e sample.



51

(a) (b) (
)

(d) (e)Figure 4.4: Conne
ted 
omponents for homogeneous region measurement generation.(a) Tra
king window; (b) Mahalanobis distan
e of pixels in RGB spa
e to skin 
olor;(
) Pixels over a threshold of 
olor similarity; (d) Largest 
onne
ted 
omponents ofskin-
olored pixels (E = 2); (e) Measurements derived from 
onne
ted 
omponents.separated by image artifa
ts su
h as video interla
ing and 
amera noise. Next, we
ompute the 
onne
ted 
omponents (in the eight-
onne
ted sense) of what remains,throw away CC's whose areas fall below a threshold. Finally, a measurement is 
re-ated from ea
h remaining CC by �tting an ellipse to it with prin
ipal 
omponentsanalysis and using the major and minor axes the ellipse to de�ne a re
tangle.With the CC method, the surfa
e pat
h being tra
ked may proje
t to multipleregions if it is nonplanar, resulting in one target giving rise to multiple measurements.This is not a problem for position estimation, but it prevents a

urate 
omputationof the target's image size and orientation. Moreover, thresholding 
olor similarity



52inevitably omits some worthy pixels falling just below the threshold, as with the rightside the of fa
e in Figure 4.4, biasing the measurement for that 
onne
ted 
omponent.The quality of the CC method's results is best when p(I jX) has distin
t peaks with
ompa
t support.A similar approa
h to extra
ting measurements by 
al
ulating the 
onne
ted
omponents of thresholded grays
ale images was reported by Kumar et al. [78℄.Textured RegionsThe state sampling pro
ess for a textured region tra
ker 
onstrained to translationis shown in Figure 4.5. The obje
t of interest is the fa
e of a player in a 
roppedphotograph of the 1926 New York Yankees baseball team. The multiple fa
es inthis group pi
ture 
learly illustrate the potential multimodality of p(I jX) and itsimpli
ations for measurement generation. For simple translation of the region, statespa
e is X = X � Y . In Figure 4.5(b-
), relatively many samples and measurements(N = 3000; n = 50) are used, plus a large sampling 
ovarian
e �X = � 1000 00 1000 �.Figure 4.5(b) shows the initial samples and 4.5(
) shows the measurements obtainedfrom the top fra
tion of the samples. The results of a smaller sampling 
ovarian
e,�X = � 100 00 100 �, and fewer samples and measurements (N = 250; n = 5) are similarlydisplayed in Figure 4.5(e-f).SnakesThe steps of the sampling pro
ess for a 
hess pawn-shaped snake 
onstrained totranslation only are illustrated in Figure 4.6. Allowing only translation of the snake,state spa
e is X = X � Y . In Figure 4.6(
-d), a relatively large number of samplesN = 2000 and measurements n = 50 are used, as well as a large sampling 
ovarian
e�X = � 3000 00 3000 �. A tighter sampling 
ovarian
e is shown in Figure 4.6(e-f): �X =
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(a)

(b) (
)

(d) (e)Figure 4.5: Random sampling for textured region measurement generation. (a)Predi
ted state; (b) Samples with large 
ovarian
e (about predi
ted state); (
) Bestsamples from large 
ovarian
e; (d) Samples with small 
ovarian
e; (e) Best samplesfrom small 
ovarian
e.
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(a) (b)

(
) (d)

(e) (f)Figure 4.6: Random sampling for snake measurement generation. (a) Predi
tedstate; (b) Canny edges in image (� = 2:0, �̂low = 0:25, �̂high = 0:75); (
) Sampleswith large 
ovarian
e (about predi
ted state); (d) Measurements for large 
ovarian
esample; (e) Samples with small 
ovarian
e; (f) Measurements for small 
ovarian
esample.



55� 400 00 400 �. The number of samples N = 250 and measurements n = 5 are alsosmaller, eliminating the distra
tions of the gap between the 
hess player's �ngersand the other pie
es.4.2 Filtering MethodsKalman �ltering [5, 69℄ is an eÆ
ient method for tra
king when the distribution onmeasurements is Gaussian. This �lter is an algorithm for linear estimation of a setof time-varying parameters typi
ally 
alled the state X. Suppose that the evolutionof the system at time t is des
ribed by the dynami
 equation:Xt = FXt�1 + qt (4.1)where qt is a sequen
e of zero-mean, white, Gaussian noise with dynami
 
ovarian
eQ. The state is related to observable data Z by the measurement equation:Zt = HXt + rt (4.2)where rt is also zero-mean, white, Gaussian noise with measurement 
ovarian
e R.Using the previous (or initial) state estimate and the 
urrent data, the Kalman �lterarrives a new estimate for X by 
al
ulating the quantities in Table 4.1 (ex
ept for theidentity matrix Id, every variable not subs
ripted by t � 1 is impli
itly subs
riptedby time t).A 
ommon modi�
ation to the plain Kalman �lter to handle nonlinearities inthe dynami
 and measurement equations is the �rst-order Extended Kalman Filter(EKF) [5℄. A nonlinear dynami
 equationXt = F (Xt�1)+qt is linearized by assigningthe �rst term of the Taylor series expansion of F about Xt�1 at ea
h �lter update



56bX = FXt�1 Predi
ted stateẐ = H bX Predi
ted measurementbP = FPt�1 FT +Q State predi
tion 
ovarian
eS = H bPHT +R Measurement predi
tion 
ovarian
e� = Z� Ẑ InnovationW = bPHT S�1 Filter gainX = bX+W � State estimateP = (Id�WH) bP State 
ovarian
e estimateTable 4.1: Kalman �lter equationsto the matrix F. A nonlinear measurement equation zt = H(Xt) + rt is dealt withsimilarly by expanding H about bX every �lter update to obtain H.Situations in whi
h there are departures from the assumption that the posterioris Gaussian require extensions to the Kalman �lter. For example, noise might tem-porarily 
reate multiple measurements or 
ause the target-originated measurement todisappear. Or we might be tra
king T obje
ts as independent entities, and thus ex-pe
t there to be a persistent measurement for ea
h one. Proper target-measurement
orresponden
es are maintained by 
ontinually 
omputing the asso
iation probabili-ties of the various possibilities.Modi�
ations to the Kalman �lter to deal with these phenomena are often 
alleddata asso
iation methods [5℄. Su
h methods are ways of rationally modeling partof the world outside of the state in order to estimate X more a

urately. In the
ourse of visual tra
king, o

lusions, distra
tions, and multiple targets of interest are
ommon 
ompli
ations, so it seems natural to adapt data asso
iation te
hniques to
ombat them.Next, we examine an extension of the Kalman �lter to a basi
 data asso
iation�lter, the Probabilisti
 Data Asso
iation Filter (PDAF) [5℄. The three key steps ofa vision-based PDAF tra
king algorithm are shown in Figure 4.1. These are: (1)generate measurements, (2) weight them by asso
iation probability, and (3) update



57the state estimate based on the weighted measurements.4.2.1 Probabilisti
 Data Asso
iation FilterThe measurement pro
esses des
ribed above derive a group of 
andidate states forea
h tra
ker. The Probabilisti
 Data Asso
iation Filter (PDAF) [5, 28℄ is an exten-sion of the Kalman �lter [5℄ that uses a Bayesian approa
h to the problem of dataasso
iation, or how to update the state when there is a single target and possibly nomeasurements or multiple measurements due to noise.The simplest form of data asso
iation is the nearest neighbor (NN) method [5, 28℄,whi
h pi
ks the data 
losest to what is expe
ted in order to update the state. Withsome �nite probability, though, this 
hoi
e will be wrong, leading to biases in thestate estimate or outright mistra
king. The PDAF, on the other hand, attemptsto hedge its bets by weighting the various possibilities. Weights are assigned to themeasurements based on two major assumptions. First, the PDAF assumes that thereis exa
tly one target, giving rise to one \true" measurement, whi
h may sporadi
allydisappear either be
ause the target is temporarily o

luded or be
ause of subop-timal feature dete
tion at any stage of the pipeline between the 
amera and (forexample) the edge dete
tion algorithm. Se
ond, the PDAF assumes that all othermeasurements are \false" and arise from a uniform noise pro
ess.The relevant step in the Kalman �lter is the 
omputation of the innovation �.The PDAF introdu
es a notion of the 
ombined innovation, 
omputed over the nmeasurements dete
ted at a given time step as the weighted sum of the individualinnovations: � = Pni=1 �i� i. Ea
h �i is the probability of the asso
iation event �ithat the ith measurement is target-originated. Also 
omputed is �0, the probabilityof the event that none of the measurements is target-originated (i.e., the target isasso
iated with the null measurement). These events en
ompass all possible inter-
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ẑ2
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z5(a) (b) (
)Figure 4.7: The data asso
iation problem. (a) No measurements (ellipse indi
atesvalidation gate); (b) Multiple measurements; (
) Multiple targets.pretations of the data, so Pni=0 �i = 1. The asso
iation probabilities are as followsfor a given time step:
�0 = bb +Pnj=1 ej (4.3)�i = eib +Pnj=1 ej ; i > 0 (4.4)where ei = exp(�12�Ti S�1�i) and b = '(1� PDPG)=PD. Here PG is the probabilitythat the 
orre
t measurement is in the validation gate (explained below), PD is theprobability that the measurement will be dete
table if it is in the validation gate, and' is a variable dependent on the number and dimensionality of the measurements[5℄. For the tra
king examples throughout this dissertation we will use values ofPG = 0:99 and PD = 0:9.The validation gate is an ellipsoidal volume in measurement spa
e 
entered onẐ, the measurement predi
ted from the 
urrent state estimate, and whose shape isde�ned by S, the estimated 
ovarian
e of the predi
ted measurement, su
h that theprobability of a target-originated measurement appearing outside of it is negligible.



59The size of the validation gate is set so that it 
ontains � � 3 standard deviations ofthe Gaussian distribution 
orresponding to S, making the probability of su
h an eventless than or equal to 0:01. Little a

ura
y is thus lost by disregarding measurementsfalling outside the gate.Limiting image pro
essing to a tra
king window, or small re
tangular subimagearound the 
urrent target state [52℄, is a 
ommon approximation of a validation gateon the image spatial 
omponent of the state. Here we implement a validation gatethrough the sampling 
ovarian
e �X .Randomly sampling from a normal distribution and sele
ting the top fra
tion ofthe samples as measurements, as we do, does not pre
isely satisfy the PDAF assump-tion of a uniform distribution of false measurements, but it is usually a reasonableapproximation. Multiple measurements 
oming from the true, target-originated peakin the image likelihood fun
tion p(I jX), as seen in Figure 4.3(
) and (e) and Fig-ure 4.6(d) and (f), are tightly 
lustered in one part of the validation gate ratherthan uniformly distributed throughout it. This is a harmless departure from theuniformity assumption be
ause the e�e
t of the PDAF asso
iation probabilities is toaverage the 
ontribution of the measurements to the state estimate, and measure-ments tightly arranged around a maximum of p(I jX) average out to that maximum.Measurements from false, non-target-originated peaks in p(I jX) are a di�erentmatter. Many false peaks are truly due to noise sour
es su
h as the atmosphere (afa
tor that is more important outdoors and over long distan
es), 
amera, and video
apture devi
e. It is also reasonable to model some dynami
 s
ene elements as noisebe
ause of their unpredi
table movements and ability to be appear and disappear,su
h as re
e
tions o� of a rippling water surfa
e. However, many s
ene elements|other parts of a 
omplex obje
t being tra
ked, a stati
 ba
kground, other movingobje
ts, et
.|are too persistent to be regarded in this fashion. If peaks in p(I jX)
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orresponding to su
h visual phenomena are weak 
ompared to the target-originatedpeak and uniformly distributed, random sampling will generate measurements fromthese peaks relatively uniformly and their in
uen
e will be 
an
elled out. If the falsepeaks are strong enough, though, measurements from them will be generated dispro-portionately, biasing the PDAF �lter's state estimates. We investigate te
hniquesfor su

essfully tra
king when there are multiple persistent peaks in p(I jX) in thenext 
hapter.As a �nal note in this dis
ussion of the PDAF, the introdu
tion of asso
iationprobabilities alters the 
al
ulation of the error 
ovarian
e of the state estimate Pgiven in Table 4.1. For the standard Kalman �lter, P is independent of the measure-ments, but the un
ertainty of the state estimate with the PDAF �lter is highly depen-dent on the data. Spe
i�
ally, P = �0 bP+(1��0)P
+ eP, where P
 = (Id�WH) bPand eP =W �Pni=1 �i � i �Ti � � �T �WT (see [5℄ for a derivation).4.3 ResultsSome examples of PDAF tra
king are given below in Figures 4.8, 4.10, and 4.11 forhomogeneous regions, Figures 4.12 for snakes, and Figures 4.9 and 4.13 for texturedregions.Figure 4.8 illustrates the resistan
e of the PDAF to distra
tions due to noise. Toperfe
tly 
ontrol noise 
onditions, we 
reated a 
omputer graphi
s simulation of red
ir
les on a bla
k ba
kground. There is one target whi
h moves in a 
ounter
lo
kwiseellipti
al orbit at a rate of 0.02 radians per frame and 50 random distra
tors froma uniform distribution in ea
h frame. The target has a state of X = (x; y) and thesame measurement parameters; it is tra
ked with a homogeneous region tra
ker. 100samples are 
hosen with a sampling 
ovarian
e of �X = � 100 00 100 �. In one series of
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(a) (b)Figure 4.8: PDAF: Tra
king a syntheti
, 
ir
ular homogeneous region with uniformnoise (CG). (a) Frame 0 with the initial position and ground truth for the entireorbit overlaid; (b) Frame 300 with a history of estimates at 25 frame intervals.experiments, only the single best sample was used as a measurement. The tra
kerwas able to follow the 
ir
le through a full orbit in only 5 out of 20 trials. In anotherseries of experiments, the 10 best samples were used as measurements. This tra
kerwas mu
h less vulnerable to distra
tion, and su

eeded in tra
king the 
ir
le througha full orbit in 17 out of 20 trials. Two representative frames from a trial of the latterseries are shown in Figure 4.8. The a
tual path followed by the 
ir
le is shown inFigure 4.8(a) overlaid on the initial frame, and the estimates made by the tra
ker upto frame 300 are drawn in Figure 4.8(b) at 25 frame intervals.In Figure 4.9, a textured region tra
ker is atta
hed to a mouse embryo as the mi-
ros
ope slide is moved and the embryo is poked and rotated with a probe. The stateof the tra
ker is simply position and orientation: X = (x; y; �), and measurementspa
e is Z = X � Y � �. As the �gure shows, a tra
ker that uses gradient as
ent(Powell's method) alone to generate a single measurement is thrown o� when theembryo moves abruptly after frame 60. A tra
ker that uses random sampling for mea-surement generation, on the other hand, is able to re
over from these agile motions.In this 
ase, 5 measurements are 
ulled from 250 samples, where �X = � 100 0 00 100 00 0 0:04 �.



62A homogeneous region tra
ker would be inappropriate be
ause of the la
k of 
on-trasting 
olor in the image, and a snake tra
ker around the 
ontour of the embryowould be able to estimate position but not rotation.Figure 4.10 shows a homogeneous region tra
ker following the forearm of a personas he walks from left to right. There is not mu
h s
aling, but the motion is fairlydynami
, so the state in
ludes the forearm's image position, orientation, and the ve-lo
ities of these parameters: X = (x; y; �; _x; _y; _�). Ea
h measurement is a translationand rotation of a �xed size re
tangle, so Z = X � Y � �. The re
tangles overlaidon the �gure indi
ate the 10 best measurements taken from 1000 samples in thatframe, where �X = � 100 0 00 100 00 0 0:02 �. In general, the most probable measurements forma tight 
luster around the measurement predi
ted from the 
urrent state (ex
eptwhere distra
tions indu
e a multimodal distribution).Another example of homogeneous region tra
king is shown in Figure 4.11. Herethe target is the orange front end of a ra
e 
ar approa
hing the 
amera along a bankedoval, so the state in
ludes image position, orientation, and s
ale: X = (x; y; �; s).Measurement spa
e is Z = X�Y ���S. The tra
ker state at 40-frame intervals isoverlaid on the �gure. For this example there are 5 measurements and 1000 samples,and �X = � 50 0 0 00 50 0 00 0 0:01 00 0 0 0:005 �.In Figure 4.12, we tra
k two human heads in infrared (IR) imagery as they pri-marily translate and s
ale, one with a 
losed 
ontour and the other with an open
urve. Ordinarily, an aÆne B-spline has six degrees of freedom, but we have foundthat shearing and independent s
aling of the verti
al and horizontal axes are rare formany simple obje
t motions, so for this example the aspe
t ratios of the snakes are
onstrained to stay 
onstant, resulting in three degrees of freedom. This heuristi
 isan approximation of what is learnable about appropriate priors on snake dynami
s bymore sophisti
ated pro
edures [17, 18℄. Thus, the state of ea
h tra
ker is expressed
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(a) (b)

(
) (d)

(e) (f)Figure 4.9: Gradient as
ent (GA) alone vs. random sampling (RS): tra
king a mouseembryo with a translating, rotating textured region (MPEG). (a) GA state in frame0; (b) RS state in frame 0; (
) GA frame 60; (d) RS frame 60; (e) GA frame 120; (f)RS frame 120. (Sequen
e 
ourtesy of G. Danuser).
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(a) (b)

(
) (d)

(e) (f)Figure 4.10: PDAF: Tra
king a swinging arm with a translating, rotating homo-geneous region (MPEG). (a) Region state in frame 0; (b) Region measurements inframe 0; (
) State in frame 17; (d) Measurements in frame 17; (e) State in frame 34;(f) Measurements in frame 34. (Sequen
e 
ourtesy of J. Ma
Cormi
k).
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(a) (b)

(
) (d)Figure 4.11: PDAF: Tra
king a ra
e 
ar with a translating, s
aling, rotating homo-geneous region (MPEG). (a) Region state in frame 0; (b) State in frame 40; (
) Statein frame 80; (d) State in frame 120.



66as X = (x; y; s) and Z = X � Y � S. Ea
h tra
ker sele
ts the best 5 measurementsfrom 250 samples; �X = � 100 0 00 100 00 0 0:01 �. The good 
ontrast provided by the IR meansthat there are not many distra
ting edges, but the sequen
e shows the ability of thePDAF/state-sampling method of snake tra
king to estimate the state a

urately.A s
aling, translating textured region tra
ker follows a jumping motor
y
list inFigure 4.13. The tra
ker state is given by X = (x; y; s), and measurement spa
e isZ = X � Y � S. Five measurements are taken from 1000 samples, where �X =� 25 0 00 25 00 0 0:001 �. Some biasing is introdu
ed be
ause the perspe
tive on the motor
y
le
hanges slightly from frontal to a three-quarters view, an unmodeled transformation.
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(a) (b)

(
) (d)

(e) (f)Figure 4.12: PDAF: Tra
king two fa
es with translating, s
aling snakes (MPEG ofinfrared imagery, Canny). (a) Snake states in frame 0; (b) Snake measurements inframe 0; (
) States in frame 70; (d) Measurements in frame 70; (e) States in frame140; (f) Measurements in frame 140.
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(a) (b)

(
) (d)Figure 4.13: PDAF: Tra
king a motor
y
le with a translating, s
aling textured region(MPEG). (a) Region state in frame 0; (b) State in frame 30; (
) State in frame 60;(d) State in frame 90.



Chapter 5
Joint Tra
king
In the previous 
hapter we assumed that there are no other strong, persistent featuresin the image that have attributes similar to those of the tra
ked target. This is afair approximation for many visual situations, but it 
ertainly does not hold whentra
king multiple similar or identi
al obje
ts or one obje
t with multiple similarparts. If and when the states of the individual parts be
ome proximate, one target-originated measurement may often fall within another target's overlapping validationgate. Su
h persistent interferen
e, were one to simply run a separate PDAF tra
keron ea
h part, 
ould lead to multiple tra
kers lo
ked onto the same part. Even whenusing a pure gradient as
ent te
hnique for tra
king, whi
h greatly redu
es the size ofea
h tra
ker's validation gate and hen
e its sus
eptibility to distra
tion, two similartargets 
rossing paths may 
ause 
onfusion.An example of a visual situation that may lead to mistra
king be
ause it 
ontainsmultiple similar features is shown in Figure 5.1. This image was 
aptured from avideo of two tandem kayaks being paddled alongside one another. One might wantto tra
k the boats as a whole, the torsos of the paddlers in them, or even the tipsof their oars. Ea
h of these obje
ts 
an be readily 
hara
terized by 
olor|the boats69
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Figure 5.1: Ambiguity when tra
king multiple obje
ts simultaneously (
aptured froma Qui
ktime video)are red, two of the people are wearing yellow life ja
kets, and the blades of the oarsare bright blue|and thus would seem to be amenable to the te
hniques introdu
edin the previous 
hapter. The problem is that multiple areas of the image satisfy ea
hof these des
riptions. That is, sear
hing the image for an oar blade by looking fora homogeneous blue region will return multiple good 
andidates, or measurements.Many persistent measurements 
an lead to an ambiguity of asso
iation, often makinga PDAF tra
ker peel o� of the 
orre
t image feature and atta
h itself to a nearbyfeature that is similar but in
orre
t.This phenomenon o

urs be
ause PDAF state estimation is essentially solving aweighted least squares problem, where the asso
iation probabilities are the weightsand the measurements are the data. Two or more measurements that persist inthe tra
ker's validation gate will drive its state to a position that minimizes thedistan
e between the predi
ted measurement and the observed ones. Be
ause ofthe randomness of the state dynami
s and noise (i.e., whether the measurements are
onsistently refound from frame to frame), when image 
onditions again produ
e onepersistent measurement in the validation gate, the tra
ker may have slipped onto anon-target feature. In parti
ular, if there are multiple 
orre
tly-initialized PDAF



71tra
kers looking (for example) for blue regions, be
ause of their ignoran
e of ea
hother they might eventually all 
lump onto the same oar blade and erroneously ignorethe others.This 
hapter reviews methods for dealing with this 
lass of problems by sharinginformation between tra
kers. If we are tra
king all of the image features that maymutually 
ause distra
tion, it seems reasonable to surmise that adding an overar
h-ing layer of reasoning may help ensure that the tra
kers are eÆ
iently and 
orre
tlydistributed over the measurements. One su
h te
hnique that we dis
uss is an ex-isting extension to the PDAF 
alled the Joint Probabilisti
 Data Asso
iation Filter(JPDAF) [5℄. The JPDAF often mitigates problems of persistent distra
tion thato

ur when tra
king multiple obje
ts. The �rst part of the 
hapter investigates theissues involved in adapting the JPDAF to vision; one limitation is that it 
an onlybe used for groups of obje
ts of the same modality. In the se
ond half of the 
hapterwe introdu
e a new approa
h 
alled the Joint Likelihood Filter (JLF). This method
aptures the 
rux of the JPDAF but is readily appli
able to mixtures of di�erenttra
king modalities, is more eÆ
ient than the JPDAF, and in
orporates expli
it rea-soning about o

lusion relationships between obje
ts.5.1 Joint Probabilisti
 Data Asso
iation FilterThe Joint Probabilisti
 Data asso
iation Filter (JPDAF) [5℄ deals with the problem ofinterferen
e between multiple tra
kers by sharing information among separate PDAF�lters in order to more a

urately 
al
ulate asso
iation probabilities. This joint
al
ulation of asso
iation probabilities for multiple obje
ts is illustrated in Figure 5.2.The essential e�e
t of the JPDAF is an ex
lusion prin
iple of sorts that prevents twoor more tra
kers from lat
hing onto the same target.
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MeasurementGenerationt1? MeasurementGenerationtT?Asso
iation Probabilitiest1; : : : ; tT?StateEstimationt1 ?StateEstimationtTFigure 5.2: JPDAF pipelineSuppose that we are tra
king T obje
ts, for whi
h a total of n measurementshave been generated from the 
urrent image. These measurements may be generatedindependently for ea
h tra
ked obje
t as in the previous 
hapter, but this leads todiÆ
ulties as we will see below. Methods for deriving measurements for all obje
tsjointly are presented in Se
tion 5.1.1. For simpli
ity, we assume for the momentthat every target is being tra
ked using the same tra
king modality (in the sense ofChapter 3). This means that every tra
ker shares the same image likelihood fun
tionp(I jX). If this is not the 
ase|if targets have di�erent modalities|then the JPDAFis not appli
able. An alternative method that a

ommodates di�erent modalities isdis
ussed in the next se
tion.A key notion in the JPDAF is that of a joint event �, or 
onjun
tion of asso
i-ation events �jtj . The subs
ript tj has been added to the de�nition of asso
iationevent introdu
ed in the last 
hapter in order to indi
ate the index of the target towhi
h measurement j is mat
hed. For the PDAF there was only one target, mak-ing this unne
essary. A parti
ular joint event is thus de�ned over T targets andn measurements as � = Vnj=1�jtj . The event �j0 indi
ates that measurement j



73is asso
iated with no target|that is, it is assumed to be due to noise|while �0tamounts to a hypothesis that target t is o

luded or simply undete
ted.A useful 
on
ept to 
onsider at this point is that of a feasible joint event [5℄.The probability of a given joint event � depends, as with the PDAF, on the dis-tan
es between ea
h target's predi
ted measurement and the a
tual measurement itis asso
iated with in �, as well as the asso
iated measurements' image likelihoods.Thus, one 
ondition for �'s feasibility is that for every asso
iation �jtj in �, mea-surement j is in the validation gate of target tj. However, an additional in
uen
eon the probability of � stems from the intera
tion of the various asso
iation eventsin �. Suppose that a single, uni�ed measurement pro
ess generates at most onemeasurement for ea
h peak in the image likelihood fun
tion p(I jX) and that ea
htarget indu
es at most one peak in p(I jX). A

ording to these 
onditions, two kindsof 
ombinations of asso
iations are logi
ally in
ompatible or infeasible. In the �rst
ase, a joint event � 
ontains two asso
iations �jt1 ;�jt2 su
h that t1 6= t2 and j 6= 0,implying that two di�erent targets are responsible for the same measurement. Thisis a 
ontradi
tion. In the se
ond 
ase, � in
ludes asso
iations �iti ;�jtj su
h thati 6= j but ti = tj. This amounts to an interpretation that a single target has spawnedmultiple measurements|also an impossibility.Infeasible joint events thus have zero probability and 
an be disregarded. A jointevent is feasible only when ea
h target is asso
iated with one or no measurements andea
h measurement is asso
iated with one or no targets. To denote these 
onstraintsmathemati
ally, we �rst de�ne a measurement asso
iation indi
ator � and targetdete
tion indi
ator Æ [5℄. �j is de�ned to be the number of targets asso
iated withmeasurement j (�j = 0 indi
ates a hypothesis that the measurement is due to noise),while Æt is the number of measurements mat
hed to target t. A joint event is thusfeasible when �j � 1 for all measurements j and Æt � 1 for all targets t. The pro
ess



74of generating all feasible joint events for an example set of targets and measurementsis illustrated in Figure 5.3.Without some form of the pre
eding feasibility logi
 in the state estimationpipeline, it is possible for nearby targets t1 and t2 to 
onsistently be asso
iatedwith one measurement whi
h properly belongs to t1. Over time, su
h a 
onditionwill lead to their states inappropriately 
onverging, and t2 will have lost tra
k of its
orre
t measurement.Our assertion that ea
h obje
t 
auses a single peak in p(I jX) (or none if it isfully o

luded) is not always stri
tly true. Re
e
tive surfa
es around a target 
an
ause multiple 
opies to be per
eived by the viewer; sharp shadows 
ast by the tar-get 
an proje
t slightly-transformed 
opies of its silhouette nearby. We assume thatthese imaging phenomena 
an be negle
ted as improbable for the bulk of visual sit-uations. Also, the 
ondition that a single measurement be 
reated for ea
h peak isnot automati
ally met. Using random sampling alone, the method of measurementgeneration des
ribed in the previous 
hapter typi
ally extra
ts multiple measure-ments not attributable to noise for ea
h target, violating one of the presumptionsof the JPDAF. Even if this problem is remedied by simply limiting the number ofmeasurements 
reated by ea
h tra
ker to 1, ea
h of these measurements may still bederived from the same image feature. As we will see, gradient as
ent in fa
t be
omesa ne
essary ingredient in the measurement pro
ess for the JPDAF. In se
tion 5.1.1we address these issues by introdu
ing a single, joint measurement pro
ess over alltargets that apportions measurements rationally.For now, though, we assume that the pool of n measurements derived from the Ttargets 
ontains no more than T measurements that are due to a target-derived imagefeature as opposed to noise, and that all of the target-derived measurements are dueto unique targets instead of the same one. Next we will des
ribe how the JPDAF
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ẑ1

z2

ẑ2
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ẑ1

z2

ẑ2
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Θ3

ẑ1
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76modi�es the asso
iation probabilities 
omputed for ea
h tra
ker from the standardestablished for the PDAF in order to a

ount for the additional information availablefrom the other tra
kers.Let !jt(�) = 1 if �jt � � and 0 otherwise. From [5℄, the probability of asso
i-ation between measurement j and target t given measurements Z1; : : : ;Zn is givenby �jt =P� P (� jZ1; : : : ;Zn)!jt(�), where:P (� jZ1; : : : ;Zn) = � nYj=1[Nj℄�j TYt=1(P tD)Æt(1� P tD)1�Æt (5.1)where � 
ontains terms for normalization and s
aling, and Nj is the Gaussian prob-ability density N [Zj ; Ẑtj ;Stj ℄ for measurement j. Here Zj is the measurement value,Ẑtj is the predi
ted measurement value for target tj, and Stj is the asso
iated inno-vation 
ovarian
e.The above formula gives an estimate of the probability of ea
h parti
ular target-measurement asso
iation. However, for a given tra
ker t we 
annot dire
tly employthe set of JPDAF-
omputed asso
iation probabilities �jt in the same manner thatthe asso
iation probabilities �j would be used for the PDAF. This is be
ause thePDAF linearly 
ombines innovations, in e�e
t averaging the 
ontributions of themeasurements in order to update the state. When, as with the PDAF, there is onlyone persistent, target-derived measurement plus some noise, the noise will 
an
el outover time be
ause of its transient nature (if it is not too severe). If there are multiplepersistent measurements, though, as with the JPDAF, averaging their 
ontributions
an lead to a state estimate su
h that the predi
ted measurement is the average ofthe persistent measurements (depending on the proximity of the measurements tothe predi
ted measurement and the value of the measurement 
ovarian
e R). Inother words, by preventing multiple tra
kers from 
lumping onto one feature the



77JPDAF 
ould 
ause them to all 
ongregate around some hypotheti
al mean feature.This fa
t does not appear to have been noted in [5℄.In order to avoid this phenomenon we reset the probability of one spe
ial asso
i-ation event to unity and the rest to zero for ea
h target, and then update exa
tly aswith the PDAF. This prevents any unwarranted 
ombination of innovations. Howshall the the favored asso
iation be sele
ted for ea
h tra
ker t? It is tempting togreedily 
hoose the most likely asso
iation for ea
h tra
ker t|the asso
iation event�jt su
h that �jt � �it for all i 6= j. This does not work, however, be
ause ofthe possibility that the two targets t1 and t2 will be infeasibly asso
iated with thesame measurement|i.e., �j1t1 and �j2t2 are pi
ked, but j1 = j2. (This happensimmediately, for example, when there is one measurement Z1 equidistant from thepredi
ted measurements Ẑ1 and Ẑ2 and the initial �lter parameters as enumeratedin Table 4.1 are identi
al for the two tra
kers). Instead, we use those asso
iations ofthe most probable joint event �̂ whi
h are not of the form �j0. These asso
iationevents represent the most probable mutually feasible set available.5.1.1 JPDAF Measurement GenerationOne desirable 
hara
teristi
 of any approa
h to joint measurement generation is thatonly one measurement be 
reated for ea
h peak in p(I j X). Consistently �ndingmultiple measurements within the same basin of attra
tion for a lo
al maximumviolates a key assumption of the JPDAF and 
an lead to multiple targets be
omingasso
iated with that peak by 
ir
umventing the JPDAF's feasibility 
onstraint. O
-
asional deviations from the one measurement per peak ideal are a

eptable but themethod of the previous 
hapter, whi
h results in a �xed number of measurements nfor ea
h target (typi
ally, n > 1), must 
learly be modi�ed.The joint method we use for T targets is based on the random sampling te
hnique



78presented in the previous 
hapter. First, Nj samples Zi are randomly generated forea
h tra
ker around Ẑj, target tj's predi
ted measurement. Based on their measure-ment image likelihoods p(I jZi), some fra
tion of the less-likely samples is eliminatedfrom further 
onsideration.In the se
ond step, ea
h remaining sample Zi serves as the starting point forgradient as
ent to a lo
al maximum of the measurement image likelihood fun
tionp(I jX). We use the 
onjugate gradient algorithm [94℄ for hill-
limbing, where thegradient of p(I jX) is estimated numeri
ally as des
ribed in the previous 
hapter.The result of this step for ea
h sample is Z0i.The purpose of the hill-
limbing step is twofold. First, the resulting samples Z0iare, as a whole, better and less noisy (in the sense that they are more 
onsistentfrom frame to frame) 
andidates for state estimation. Se
ond, states that are on theslopes of the same peak of p(I jX) but somewhat separated by the randomness ofthe sampling pro
ess tend to 
onverge in state spa
e X as they as
end (provided
ertain lo
al 
onditions on p(I jX) hold). If this is true, we 
an dedu
e that aggre-gations of samples after hill-
limbing will be relatively tightly 
lustered around lo
almaxima. Sin
e the JPDAF relies on the measurement pro
ess to generate only onemeasurement per peak on average, we 
an 
hoose the best sample in ea
h 
luster asrepresentative of a peak.The third step is therefore to try to 
hoose one exemplar for ea
h group of samples.This is done by enfor
ing a minimum separation between samples in X . First, thehill-
limbed samples are sorted by �tness. Starting with the most �t sample Xbest,all less �t samples Xi su
h that jXbest�Xij � � are eliminated. In pra
ti
e, we usea di�erent threshold �k for ea
h parameter of the joint measurement and eliminatesamples whi
h are too 
lose along any dimension. Unless otherwise noted, we use�X = �Y = 10 pixels, �� = 0:1 radians, and �S = 0:01. The purpose of � is to



79attempt to 
ompensate for any la
k of pre
ision in the hill-
limbing algorithm andto ignore maxima whose basins of attra
tion are too small.The thinning pro
ess is repeated for the next most �t sample still remaining, andso on until the least �t sample left is rea
hed. This is essentially a 
lustering pro
ess,but we do not need a general 
lustering algorithm be
ause of the assumption thatthe gradient as
ent step has brought the members of ea
h 
luster suÆ
iently 
losetogether. This pro
ess yields a variable number of measurements n generally equalto the number of tra
ked obje
ts T . The value of n 
an vary due to the randomnessof the sampling pro
edure and the degree to whi
h the 
ondition that the image onlyhas T target-like features holds.This method is applied in Figure 5.4 to the hypotheti
al posterior distributionand the Yankees pi
ture from the previous 
hapter. Compare Figure 5.4(a) to Fig-ure 4.2(d) and Figures 5.4(b) and (
) to Figures 4.5(
) and (e), respe
tively.5.1.2 Algorithmi
 ComplexityFor a large number of targets, the JPDAF 
an be
ome 
ombinatorially problemati
.This is be
ause the number of joint events � whi
h must be 
onsidered for ea
h �lterupdate is the following exponential fun
tion of the number of validated measurementsn and targets T : F (n; T ) = 1 + min(n;T )Xi=1 �ni� i�1Yj=0(T � j) (5.2)Example values of F for some di�erent n and T are shown in Table 5.1.Su
h 
omplexity 
an often be avoided by partitioning the target set into groupsof targets with overlapping validation gates and running independent JPDAFs onea
h one [28℄.
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(a)

(b) (
)Figure 5.4: Gradient as
ent and minimum separation. (a) Best samples for hy-potheti
al posterior distribution after gradient as
ent with Powell's method. Ea
hmaximum has multiple samples in almost the same lo
ation, so the minimum separa-tion pro
edure results in 3 measurements; (b) Measurements resulting from gradientas
ent and minimum separation on best samples of large 
ovarian
e; (
) Measurementfor small 
ovarian
e.



81nnT 1 2 3 4 5 60 1 1 1 1 1 11 2 3 4 5 6 72 3 7 13 21 31 433 4 13 34 73 136 2294 5 21 73 209 501 10455 6 31 136 501 1546 40516 7 43 229 1045 4051 13327Table 5.1: Number of joint events as a fun
tion of the number of measurements nand targets T .5.2 Joint Likelihood FilterThe JPDAF, though a useful advan
e over the PDAF, la
ks 
ertain desirable prop-erties. First and foremost among these is its inappli
ability to mixtures of di�erentkinds of tra
kers. This limitation stems from the JPDAF's requirement that everytra
ker have the same image likelihood p(I j X), meaning that a 
andidate imagefeature for one tra
ker 
an be plausibly asso
iated with any other. The joint target-measurement asso
iation stage in whi
h measurements are pooled between tra
kersis only meaningful if su
h a stipulation is met. Thus, when tra
king one obje
t witha snake and another with a homogeneous region, for example, the JPDAF mustbe repla
ed by two independent PDAF tra
kers be
ause there is no informationsharing between modalities. Furthermore, tasks that involve the tra
king of mul-tiple di�erently-
olored homogeneous regions, di�erent-appearing textured regions,or di�erently-shaped snakes also require PDAF-based tra
king. This is be
ause dis-similar 
olor models (�;T), referen
e images IR, or predi
ted edge lo
ations �(i)between tra
kers of the same modality also engender di�erent image likelihoods,leading to the same problem.The JPDAF has another pra
ti
al short
oming. A key requirement whi
h wehave tried to address above is its expe
tation that T measurements are generated for



82T tra
ked obje
ts. Although our measurement pro
ess, whi
h 
ombines random sam-pling, gradient as
ent, and minimum separation, works well in most 
ir
umstan
esto ensure this, it 
an en
ounter diÆ
ulties when some of the targets overlap one an-other. The primary reason is the JPDAF's assumption that the image likelihoods ofmultiple obje
ts are independent when they a
tually are not. We 
an see this by ex-amining the analog of Equation 2.2 for multiple obje
t states (assuming 
onditioningon previous images):p(X1; : : : ;XT jI) = kp(I jX1; : : : ;XT )p(X1; : : : ;XT ) (5.3)The last term on the right hand side of this equation, whi
h we shall 
all thejoint state prior, is essentially embodied in the JPDAF by the joint feasibilitylogi
 in Equation 5.1. However, thus far we have assumed that the �rst term onthe right hand side, whi
h we 
all the joint image likelihood, 
an be fa
tored asp(I jX1; : : : ;XT ) = p(I jX1) � � � p(I jXT ). Evaluating image likelihoods independentlyand taking their produ
t as the joint event's image likelihood is an approximation.This approximation tends to break down when targets are very 
lose or overlappingbe
ause this is exa
tly when their appearan
es be
ome dependent on one another.When obje
t A o

ludes or abuts obje
t B, it a�e
ts our expe
tations about the ap-pearan
e of obje
t B and at least part of the immediate ba
kground of both obje
ts.The best 
ase out
ome of ignoring this e�e
t is that noise in the state estimate 
anin
rease, but at worst a systemati
 bias 
an be introdu
ed in the position, angle, ors
ale estimate that leads to mistra
king when the overlap ends. In order to tra
kobje
ts most a

urately, it is ne
essary to evaluate their image likelihoods jointly.In order to fa
tor p(I jX1; : : : ;XT ) properly, we need a depth ordering, relative tothe 
amera, of the tra
ked obje
ts. Knowing whi
h obje
t is in front of whi
h when



83they overlap is the key to properly predi
ting the image's appearan
e �(X1; : : : ;XT )from the obje
ts jointly. When tra
king non-planar obje
ts, it is possible that twoobje
ts will be shaped and positioned in su
h a way that they are mutually o

lusive.We negle
t this 
on�guration as highly unlikely for the types of obje
ts that we tra
k,and let the relative depth D of some representative point on the obje
t suÆ
e forthat of the whole. Su
h a relative depth 
an be 
onstru
ted straightforwardly froman obje
t's state if it in
ludes a numeri
al depth estimate. Otherwise, we 
an eitherassume a �xed ordering of the obje
ts being tra
ked, if warranted, or attempt todedu
e the ordering from the image.The joint image likelihood e�e
tively fun
tions as the joint event probability inEquation 5.1 sin
e it en
odes a measurement asso
iation (as well as the likelihood ofthat measurement) for every target. By sampling the prior in state spa
e for ea
htra
ker we 
an build up a joint measurement ZJ and dire
tly assess its likelihoodwithout in
urring the 
ombinatorial penalty asso
iated with the JPDAF. Repeatingthis joint sampling step yields a pool of joint samples. For feasibility reasons identi
alto those outlined above, only the most likely joint sample 
an be used as a jointmeasurement to update the tra
ker states. We 
all the pro
ess that results fromthese 
hanges the Joint Likelihood Filter (JLF). This details of this pro
ess arepresented in the next two se
tions.As a �nal note, we should be 
areful to distinguish a situation in whi
h T di�erentobje
ts are to be tra
ked separately (possibly with an assortment of modalities)from one where a single obje
t will be tra
ked with T di�erent modalities|e.g.,a person's head is tra
ked by a snake for its silhouette and a homogeneous regionfor its skin 
olor. In this 
hapter we address only the former 
ase. The latter
ase implies a physi
al linkage between the T putative \obje
ts" in the sense thatthey are distin
t attributes of the same underlying obje
t. Consequently, there is a
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Measurement Generationt1; : : : ; tT?Asso
iationProbabilitiest1 ?Asso
iationProbabilitiestT?StateEstimationt1 ?StateEstimationtTFigure 5.5: Joint Likelihood Filter pipelinedependent relationship between the obje
ts' states, and the joint state prior is notde
omposable: p(X1; : : : ;XT ) 6= p(X1) � � �p(XT ). Constraints between obje
ts are
overed in Chapter 6.Of 
ourse, the state priors are not truly independent anyway be
ause solid obje
ts
annot o

upy the same point in spa
e. Nonetheless, we assert that the approxima-tion is 
lose enough to be valid.5.2.1 Joint Measurement Pro
essThe JLF repla
es the independent measurement generation pro
esses for ea
h tra
kerwith a joint measurement pro
ess, diagrammed in Figure 5.5.The �rst step in the measurement pro
ess is to generate n joint samples. A givenjoint sample XJi , 1 � i � n, is built from T 
omponent samples Xj, 1 � j � T ,ea
h generated by one of the tra
kers in its state spa
e Xj. The 
omponent samplingpro
ess is the same as that used by PDAF and JPDAF tra
kers: a sample is generatedeither randomly from the distribution de�ned by the predi
ted state bXj and sampling
ovarian
e �Xj , or nonrandomly (when, for example, pure gradient as
ent is being



85used). No gradient as
ent is yet performed, however. The 
omponent samples arethen sta
ked to get a joint sample: XJi = (X1; : : : ;XT )T , so X J = X1 � : : : � XT .Component measurements 
an be derived from 
omponent state samples via Zj =H(Xj). Asso
iations, in the JPDAF sense, are impli
it: target j is asso
iated with
omponent sample Zj.An example of a joint sample 
omprising a textured region and a snake is shownin Figure 5.6(a). The textured region is tra
king a 
hess pawn and the snake istra
king a knight.The se
ond step for ea
h joint sample is to pi
k the most likely depth orderingof the T 
omponent samples in it. If we are assuming a �xed ordering or the a
tualdepth of ea
h obje
t 
an be derived from state information, this is a 
onstant-timeoperation and the algorithm pro
eeds to step three. Otherwise, we attempt to dedu
ethe ordering in a prin
ipled way. To do this, all permutations of depth orderings areenumerated, tagging ea
h 
omponent sample with a depth order index in the pro
ess.For example, if three obje
ts t1; t2; t3 are being tra
ked, we hypothesize the follow-ing set of orderings: f(t1; t2; t3); (t1; t3; t2); (t2; t1; t3); (t2; t3; t1); (t3; t1; t2); (t3; t2; t1)g,where (ti; tj; tk) indi
ates that D(ti) � D(tj) � D(tk). Di�erent depth orderingsof non-overlapping 
omponent samples are visually equivalent, indu
ing equivalen
e
lasses of depth orderings, so we automati
ally eliminate all but one representativeof ea
h 
lass. If none of the 
omponent samples of a joint sample overlap, there isonly one su
h 
lass and thus only one depth ordering must be examined. In theworst 
ase, ea
h sample overlaps every other sample and all T ! permutations mustbe examined, but this o

urren
e be
omes very unlikely for large T .Sin
e there are two overlapping 
omponent samples in the joint sample of the
hess example referred to above, there are two depth ordering hypotheses. Hypothe-ses 
orresponding to the pawn being in front of the knight and the knight being in



86front of the pawn are represented in Figure 5.6(b) and (e), respe
tively. For illustra-tive purposes, nearer obje
ts are drawn brightly and distant obje
ts more darkly.Let DXJi = fd1; : : : ;dKXJi g be the set of visually distin
t depth order permuta-tions of joint sample XJi . From above, we have that 1 � KXJi � T !. Two options atthis point are: (1) Perform gradient as
ent on the joint sample for ea
h di (a jointimage likelihood obje
tive fun
tion is des
ribed in the next se
tion) before 
hoosingthe most likely ordering, or (2) Only do gradient as
ent on the most likely order-ing. The latter 
hoi
e is at least as eÆ
ient in all situations as the former, oftenmu
h more so, and empiri
ally works quite well, so we have adopted it for all of theexamples unless otherwise noted.The third and �nal step of the joint measurement pro
ess is to sele
t the mostprobable of all of the joint samples XJi and 
onvert it to a joint measurement ZJ .The 
omponent measurements Z1; : : : ;ZT of ZJ are then plugged into Kalman �ltersfor their asso
iated tra
kers. Only one measurement is used for state estimationfor the same reason outlined in the JPDAF se
tion: linear 
ombinations of jointmeasurements (the analog of the JPDAF joint event) 
an result in in
orre
t imageinterpretations.The depth ordering of the joint state is derived dire
tly from the depth orderingof the joint measurement. Two 
onsequen
es of this 
hoi
e are that obje
ts 
an
hange their depth ordering from frame to frame (i.e., there is no model of solidity)and that the joint tra
ker may assert that one obje
t o

ludes another when theirstates are only very 
lose to interse
ting.5.2.2 Joint Image LikelihoodTo evaluate the likelihood of a parti
ular joint sample XJ and its depth orderingDXJ , the probabilities of its 
omponent samples need to be 
omputed jointly. A



87key di�eren
e between this operation and the independent approa
h of the PDAFand JPDAF is our ability to predi
t o

lusions between obje
ts. When one obje
t ishypothesized to be in front of another, our expe
tations about the o

luded obje
t'sappearan
e 
hange. Tra
kers of snakes will not expe
t edges to be found where theyare blo
ked from view, homogeneous region tra
kers will not expe
t o

luded pixelsto �t the 
olor model, and textured region tra
kers will not expe
t o

luded pixelsin the 
omparison image to mat
h the 
orresponding pixels in the referen
e image.Spe
i�
ally, DXJ allows us to mask [76, 98℄ o

luded portions of obje
ts su
h thatthe o

luding obje
ts take pre
eden
e in the formation of a jointly predi
ted image�(X1; : : : ;XT ). Those pixels whi
h are predi
ted to be obstru
ted are ignored andthose predi
ted to be visible are mat
hed normally.The masking pro
edure indu
ed by DXJ is fairly simple. Its output is a binarymask Mj for ea
h target tj that is the size of the image I. Mj(x; y) = 1 indi
atesthat the image pixel I(x; y) 
omes from target tj (i.e., tj is visible at that pixel)and Mj(x; y) = 0 indi
ates that the pixel belongs to either another obje
t or theba
kground. We are assuming that obje
ts are 
ompletely opaque and that theresolution of the imaging devi
e is high enough to negle
t the e�e
t of multipleobje
ts 
ontributing to individual pixels.Iterating over the jointly-tra
ked obje
ts from 
losest to farthest away, Mj is
onstru
ted for ea
h obje
t by setting every pixel (x; y) in the obje
t's interior to 1provided thatMi(x; y) = 0 for all obje
ts ti for whi
h D(ti) < D(tj). The interiors ofregions are simple re
tangles, but the frames of homogeneous regions are not maskedbe
ause they represent expe
tations about the ba
kground. The interiors of periodi
(
losed) snakes are de�ned by their B-splines, and the interiors of nonperiodi
 snakesare 
ompleted by 
onne
ting their endpoints. The latter method assumes that the
onne
ting line will not 
ross any segment of the spline itself.
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(a)
(b) (
) (d)
(e) (f) (g)

(h) (i) (j)Figure 5.6: Joint Likelihood Filter: Hypothesizing depth orderings. (a) Joint mea-surement; (b) 1st depth ordering; (
) 1st knight mask; (d) 1st pawn mask; (e) 2nddepth ordering; (f) 2nd knight mask; (g) 2nd pawn mask; (h) Pawn referen
e image;(i) 1st pawn 
omparison image; (j) 2nd pawn 
omparison image.



89Mknight is shown for the two depth ordering hypotheses of the 
hess example inFigure 5.6(
) and (f). Mpawn is shown for those two hypotheses in Figure 5.6(d) and(g). Note the alteration in shape of the mask when an obje
t is partially o

luded.A basi
 te
hnique behind the formulation of the independent image likelihoodsfor the various modalities, as set out in Chapter 3, is to 
ompute a mean mat
hvalue  over the extent or around the perimeter of the obje
t. This mean mat
his transformed into a likelihood by an exponential or sigmoidal fun
tion that takesbetter mean mat
hes 
loser to 1 and worse ones 
loser to 0. For homogeneous regions,the sum of the distan
es between every pixel and the 
olor model is 
al
ulated, thendivided by the area of the region's re
tangle (with some additional 
ompli
ationsinvolving the inhibitory frame). Virtually the same operation is 
arried out fortextured regions (with a di�erent model for ea
h pixel and no inhibitory frame). Forsnakes the sum of the distan
es between the predi
ted lo
ations and the edges foundalong the normals is divided by the number of normals.Under the JLF, the set of masks fMjg is used to modify this te
hnique for tworeasons. First, some pixels are erroneously 
ounted more than on
e by the PDAF andJPDAF when tra
ked obje
ts overlap; ea
h pixel should only be used as eviden
e byone tra
ker. Se
ond, the masks are used to try to ensure that ea
h pixel is 
ountedby the 
orre
t tra
ker. An approa
h that meets these 
riteria only 
ounts targetpixels that are predi
ted to be visible in the 
al
ulation of that target's mean mat
hvalue.For a textured region tj, this means that only those interior pixels (x; y) for whi
hMj(x; y) = 1 
ontribute to the mean mat
h value. That is, portions of the region'sinterior that are not visible do not have a mat
h value 
omputed and are subtra
tedfrom the e�e
tive area. This method is illustrated for the textured-region pawn ofthe 
hess example in Figures 5.6(h),(i), and (j). Figure 5.6(h) shows the referen
e
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(a) (b)Figure 5.7: Joint Likelihood Filter: Depth-independent obje
t intera
tions. (a)Nearby snake o

ludes expe
ted ba
kground (frame) of homogeneous region; (b)Nearby region limits edge dete
tion along normals of snake.image for the pawn. Figure 5.6(i) shows the 
omparison image for the hypothesisthat the pawn is in front of the knight and Figure 5.6(j) shows the 
omparison imagefor the opposite hypothesis. In the latter 
ase, the nearer knight masks out the areaof pixels shown in blue.Homogeneous regions are slightly more subtle. The 
entral area is handled inthe same fashion as textured regions, but the inhibitory frame is not in the maskMj of the tra
ker. Rather, only those pixels (x; y) in the inhibitory frame for whi
hMi(x; y) = 0 for all i 6= j are 
ounted. The same method is also used for snakes: onlyedges found at lo
ations (x; y) su
h that Mi(x; y) = 0 for all i 6= j are 
onsidered.This pixel ex
lusion is shown in Figure 5.7(a) and (b) for homogeneous regions andsnakes, respe
tively.Finally, any pixels in the interior, frame, or on the normals of an obje
t that arealso outside of the image are treated as masked out.The me
hani
s of masking, though important, are only part of a proper joint for-mulation of the image likelihood. Without an additional pro
essing step, a di�erent



91form of the state 
ollapse that joint methods are intended to eliminate is possible.Consider a tra
king task involving two textured regions. Joint measurements forwhi
h the 
omponent measurements overlap will result in one of the regions havingsome fra
tion f of its area masked out. As f ! 1, the image likelihood for that
omponent will be based on fewer and fewer pixels. Suppose that for some largef the visible portion of the region perfe
tly mat
hes the 
orresponding part of thereferen
e image. The mean mat
h for su
h a 
omponent measurement will be thesame as if the entire region were visible and perfe
tly mat
hed to the referen
e image.The latter s
enario is mu
h less probable than the former, so on
e they go into alarge or total o

lusion 
on�guration the tra
kers are unlikely to separate.Su
h \sti
kiness" 
an o

ur even if the two textured regions are subsequently both
ompletely visible. Sin
e we are assuming that the number of obje
ts is known, if twoimage features mat
h the targets then the tra
kers should know that there 
annotbe a 
opy hiding somewhere else. Clearly, we need a heuristi
 that favors imageinterpretations 
ontaining more visible obje
ts over those with fewer visible ones, allelse being equal. Not dividing by the area (i.e., going from the mean mat
h to thetotal mat
h) would solve this problem, but normalization by the area is ne
essary toeliminate a bias toward smaller measurements.Sin
e they represent a la
k of information, masked pixels should not 
ount for oragainst a parti
ular hypothesis, whereas the above formulation tends to in
rease thelikelihood of a masked hypothesis. This intuition 
an be implemented by 
lassifyingvisible pixels as either positive or negative eviden
e for the hypothesis that the targetis in a 
ertain state, and putting masked pixels in a third, neutral 
ategory ratherthan ignoring them. What makes a pixel a mat
h, or positive eviden
e instead ofnegative, varies between modalities, but fundamentally it is a threshold � in  . Toquantify this approa
h, mat
hing pixels will be assigned a value of 1, non-mat
hing



92pixels will be assigned a value of �1, and masked pixels will get 0. Measurementswith more total eviden
e in their favor are assigned a higher likelihood than thosewith no or negative eviden
e by using the sigmoid fun
tion sig (x) = 11+e�x on thesum of the pixel mat
h values.Spe
i�
ally, we repla
e the independent image likelihoods p(I j X) for homo-geneous regions, textured regions, and snakes from Chapter 3 with the following
omponent image likelihoods pJ(I jXj):Textured regionpJtregion(I jXj) = sig ( Xx;y2IR a(x; y) �  Jtregion(x; y)) (5.4)where
 Jtregion(x; y) = 8>>>><>>>>: 1 if Mj(x; y) = 1 ^ (IR(x; y)� IC(x; y))2 � �tregion�1 if Mj(x; y) = 1 ^ (IR(x; y)� IC(x; y))2 > �tregion0 otherwise (5.5)

Homogeneous regionRe
all that C is the interior of the homogeneous region and F is its inhibitory frame.pJhregion(I jXj) = sig ( Xx;y2C[F a(x; y) �  Jhregion(x; y)) (5.6)where



93
 Jhregion(x; y) =

8>>>>>>>>>>>><>>>>>>>>>>>>:
1 if Mj(x; y) = 1 ^ (x; y) 2 C ^ 
(I(x; y);T) � �hregion _Mi(x; y) = 0 8 i 6= j ^ (x; y) 2 F ^ 
(I(x; y);T) > �hregion�1 if Mj(x; y) = 1 ^ (x; y) 2 C ^ 
(I(x; y);T) > �hregion _Mi(x; y) = 0 8 i 6= j ^ (x; y) 2 F ^ 
(I(x; y);T) � �hregion0 otherwise (5.7)SnakeLet zx(k); zy(k) be the x and y image 
oordinates, respe
tively, of the best edge (ifany) found along normal k. We have:pJsnake(I jXj) = sig (n�1Xk=0 l(k) �  Jsnake(k)) (5.8)where

 Jsnake(k) = 8>>>>>>>><>>>>>>>>:
1 ifMi(zx(k); zy(k)) = 0 8 i 6= j ^ j�(k)� z(k)j � �snake�1 if Mi(zx(k); zy(k)) = 0 8 i 6= j ^ j�(k)� z(k)j > �snake_ edge not found0 otherwise (5.9)For the Joint Likelihood Filter, it is not ne
essary to 
hoose appropriate values of�2 to weight ea
h modality's 
ontribution to a
hieve a normalized \
ommon" s
ale.This is be
ause the value of  J for ea
h modality has the same range of [�1; 1℄. A
ommon range for  J is a
hieved through a di�erent s
ale fa
tor: the threshold �.The results in this dissertation, unless otherwise noted, use the values �tregion = 30,



94�hregion = 3, and �snake = L=2, where L is the length of one of the snake's edge-sear
hnormals.Let the joint tra
ker, whi
h has T 
omponent tra
kers, 
onsist of a set H ofhomogeneous region tra
kers, a set T of textured region tra
kers, and a set S ofsnake tra
kers su
h that T = jHj+ jT j+ jSj. With the 
omponent image likelihoodsde�ned as above, the image likelihood of the joint sampleXJ is simply their produ
t:
pJ(I jXJ) = Ytj2H pJhregion(I jXj) Ytj2T pJtregion(I jXj)Ytj2S pJsnake(I jXj) (5.10)It is straightforward to perform gradient as
ent on the joint image likelihood toimprove the 
omponent samples. Note that gradient as
ent does not 
hange thedepth ordering of the 
omponent samples, however. We have also observed betterresults using Powell's method [94℄ rather the 
onjugate gradient method for the jointimage likelihood, possibly be
ause of the e�e
t on its di�erentiability introdu
ed bythe nonlinear mat
h 
lassi�
ation step.5.3 ResultsFigure 5.8 illustrates the superiority of the JPDAF over the PDAF for tra
kingmultiple obje
ts in 
lose proximity. In this example, �ve airplanes 
ying in formationare tra
ked using textured regions. The planes s
ale slightly, but their primarymotion is translational and rotational, so the state of ea
h tra
ker is expressed asX = (x; y; �; _x; _y), making measurement spa
e Z = X � Y ��. For both the PDAFand JPDAF examples, ea
h tra
ker sele
ts the best 3 of 100 samples, where the statesampling 
ovarian
e is �X = � 50 0 00 50 00 0 0:01 �. Ea
h of these samples is then improved



95using Powell's method for gradient as
ent on the image likelihood fun
tion p(I jX).For the PDAF, ea
h tra
ker's set of hill-
limbed samples is thinned independentlyby enfor
ing a minimum separation of 10 pixels horizontally and verti
ally, and 0.1radians. The resulting samples be
ome the measurements for ea
h tra
ker. TheJPDAF 
reates a 
ombined pool of measurements by thinning the union of the twosets of hill-
limbed samples using the same minimum separation.The image likelihood fun
tion has a peak for ea
h of the �ve planes, and theindependent sampling and hill-
limbing done by the PDAF tra
kers results in mu
hinstability. From frame to frame, ea
h tra
ker may 
hoose the 
orre
t peak as itsmeasurement or wind up with the one to the left or right. This engenders mu
h noisein the state estimation at best, but when the wrong peak is 
onsistently used as themeasurement, a tra
ker 
an be pulled o� of the right plane. This phenomenon isillustrated in the �gure from frame 0 to frame 20. The JPDAF avoids su
h eventu-alities by reje
ting two tra
kers 
laiming the same measurement as infeasible. Themistra
king of the far right plane by the PDAF at the end of the sequen
e is due tothe diÆ
ulty of mat
hing at the edge of the image. The JPDAF most likely tra
ksthis plane su

essfully be
ause even if the rightmost tra
ker does not �nd its peak,the tra
ker to its immediate left does, adding the measurement to the shared pool.This e�e
tively in
reases the number of samples examined by ea
h tra
ker.Figure 5.9 demonstrates the eÆ
a
y of the JPDAF vs. the PDAF for tra
king thefa
es of two people in pro�le as they walk toward and then past one another. Usingtranslating homogeneous regions with identi
al dimensions and the same skin 
olormodel, the state of ea
h tra
ker is expressed as X = (x; y; _x; _y), making measurementspa
e Z = X�Y . For both the PDAF and JPDAF examples, ea
h tra
ker sele
ts thebest 10 of 50 samples, where the state sampling 
ovarian
e is �X = � 100 00 100 �. Ea
hof these samples is then improved by performing 
onjugate gradient as
ent on the
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0 10 20
30 40 50(a) PDAF
0 10 20
30 40 50(b) JPDAFFigure 5.8: JPDAF: Handling nearby textured regions (MPEG). (a) Frame sequen
eusing �ve PDAF tra
kers; (b) Frame sequen
e using JPDAF tra
king.



97image likelihood fun
tion p(I jX). For the PDAF, ea
h tra
ker's set of hill-
limbedsamples is thinned independently by enfor
ing a minimum separation of 10 pixelshorizontally and verti
ally. The resulting samples be
ome the measurements for ea
htra
ker. The JPDAF arrives at a 
ombined pool of measurements by thinning theunion of the two sets of hill-
limbed samples using the same minimum separation.With these parameters, the JPDAF su

essfully tra
ked both heads through the
rossing, maintaining the 
orre
t asso
iations, in 10 out of 10 trials. The PDAFfailed in 10 out of 10 trials. In every 
ase, the tra
ker assigned to the head of theperson walking to the left was distra
ted by the rightward-moving head, most likelybe
ause it was nearer to the 
amera and thus larger, resulting in both tra
kers lo
kingonto the same image feature.The ability of the Joint Likelihood Filter to infer the depth ordering of tra
kedobje
ts is illustrated in Figure 5.10. A white pawn 
hess pie
e is tra
ked by a texturedregion as it moves behind and is thus partially o

luded by a white knight, whi
his tra
ked by a snake. There is negligible s
aling or rotation over the duration ofthe sequen
e, so the state of ea
h tra
ker is simply its image position and velo
ity,and is expressed as X = (x; y; _x; _y), making ea
h 
omponent's measurement spa
eZ = X�Y . The snake has 16 segments. Measurement generation is done using puregradient as
ent with Powell's method. A tra
ker's outline, normally red or green,is drawn in gray when the joint measurement and its depth ordering indi
ate thatit is partially o

luded. The fa
t that the pawn is behind the knight during themiddle se
tion of the tra
king sequen
e is 
orre
tly dedu
ed. There is some noise inthe o

lusion inferen
e, however, at the very beginning and end of the two pie
es'overlap be
ause it is based on so little information.Another example of depth-order inferen
e is given in Figure 5.11. Here, twohomogeneous regions with states X = (x; y) and the same measurement parameters
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0 6 12
18 24 30(a) PDAF
0 6 12
18 24 30(b) JPDAFFigure 5.9: JPDAF: Handling 
rossing homogeneous regions (MPEG). (a) Framesequen
e using two PDAF tra
kers; (b) Frame sequen
e using JPDAF tra
king.
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0 20 40
60 80 100Figure 5.10: Joint Likelihood Filter: Dedu
ing the o

lusion relationship between atextured region and snake (MPEG).tra
k the 
olorful t-shirts of two people shaking hands. Powell's method is used tohill-
limb the best 3 of 250 joint samples (using �X = � 200 00 200 � for ea
h 
omponentsample of the joint sample); the best one of these three is used to update the state.The Joint Likelihood Filter (JLF) also mat
hes the ability of JPDAF to tra
kmultiple 
rossing obje
ts, as illustrated in Figure 5.12. In this example, two airplanes
ying in 
lose formation are tra
ked using textured regions as they overlap andseparate. The planes s
ale, translate, and rotate, so the state of ea
h tra
ker isexpressed as X = (x; y; �; s), making measurement spa
e Z = X � Y � � � S. Inthe PDAF example, ea
h tra
ker sele
ts the best 5 of 250 samples, where the statesampling 
ovarian
e is �X = � 50 0 0 00 50 0 00 0 0:02 00 0 0 0:01 �. Ea
h of these samples is then improvedusing Powell's method for gradient as
ent on the image likelihood fun
tion p(I jX). Finally, ea
h tra
ker's set of hill-
limbed samples is thinned independently by
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0 30 60Figure 5.11: Joint Likelihood Filter: Dedu
ing the o

lusion relationship betweentwo homogeneous regions (MPEG). (Sequen
e 
ourtesy of J. Ma
Cormi
k).enfor
ing a minimum separation of 10 pixels horizontally and verti
ally, 0.1 radians,and 0.01 units of s
ale. In the Joint Likelihood Filter example, the best 5 of 250joint samples (using �X for ea
h 
omponent sample of the joint sample) are alsoimproved using Powell's method on the joint image likelihood, and the best of theseis used to update the state.Cal
ulating their image likelihoods independently, ea
h plane tra
ker is attra
tedby the two nearby mat
hing features in the image as they move together. When thetwo planes separate, both often follow the same feature, resulting in mistra
king. By
al
ulating their image likelihoods jointly, both tra
kers separate properly when their
orresponding image features separate. This is be
ause of the built-in preferen
e,when the image supports it, for an interpretation that there are two visible obje
tsover an interpretation that one visible obje
t 
ompletely o

ludes the other. Therandom sampling te
hnique for measurement generation is vital here be
ause evenusing the joint image likelihood, a pure gradient as
ent tra
ker 
an get stu
k in alo
al minimum as the planes separate. The nonlo
ality of random sampling allowsthe tra
kers to jump out of suboptimal states as the planes separate unambiguously.State estimation and the inferred depth ordering are somewhat noisy during theperiod of greatest overlap be
ause of the identi
al 
oloration, shape, and markings



101of the two planes, and be
ause of the poor resolution of the image.
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(a)

0 40 80
120 160 200(b) PDAF
0 40 80

120 160 200(
) Joint Likelihood FilterFigure 5.12: Joint Likelihood Filter: Handling 
rossing textured regions (MPEG).(a) Referen
e image; (b) Frame sequen
e showing states of two PDAF tra
kers; (
)Frame sequen
e with JLF tra
ker's state.



Chapter 6
Constrained Tra
king
An important assumption of the PDAF, JPDAF, and Joint Likelihood Filter al-gorithms is that the in
iden
e of o

lusions and distra
tions 
aused by untra
kedobje
ts or other visual phenomena is reasonably approximated by a uniform or Pois-son noise pro
ess. When this approximation breaks down, as when su
h o

urren
esare a
tually due to persistent features of the visual environment, these tra
king �l-ters 
an yield biased results or mistra
k. In the previous 
hapter our strategy forimproving robustness for the target of interest was to try to tra
k as many potentialdistra
tors as possible, allowing a prin
ipled predi
tion of their visual intera
tions.However, sometimes the 
hara
teristi
s of the ba
kground may 
hange as the obje
tmoves or there may be too many distra
tors for this approa
h to be eÆ
ient. In this
ase the sele
tion of what area of the obje
t to fo
us on and what tra
king modalityto use be
ome paramount in determining tra
king a

ura
y.With regard to making this sele
tion, it is useful to distinguish between an obje
tattribute, as de�ned in Chapter 4, and what we 
all a part. A part is a spatiallydistin
t image feature physi
ally linked to the larger obje
t. Fundamentally, a partis what a tra
ker tra
ks, while an attribute is how the tra
ker identi�es its target.103



104For example, a person's fa
e may be found in an image by sear
hing for a skin-
olored region; or a pattern of textures mat
hing the arrangement of the eyes, nose,and mouth; or the spe
i�
 shape of the silhouette of their shoulders, ne
k, and headagainst a 
ontrasting ba
kground. The fa
e is a part (of the person's body), and thedi�erent ways of �nding and tra
king it are all attributes. Conversely, a person'shands, arms, and fa
e, if bare, 
an all be identi�ed by the same 
olor attribute, butare separate image features and thus termed parts.We have observed that when the noise approximation of the PDAF model isviolated, tra
king performan
e does not 
ollapse all at on
e but rather by degrees.That is, the more an obje
t is o

luded or the better a distra
ting ba
kground featuremat
hes an attribute used for tra
king, the more severe the deterioration of a

ura
yand the greater the 
han
e of outright failure. This means that larger obje
ts orobje
ts de�ned by many attributes may be less sus
eptible to distra
tion than smalleror singly-de�ned obje
ts, suggesting a strategy for improving tra
king robustness.The approa
h we take here to the problem of persistent distra
tors is to try toredu
e their in
iden
e, and hen
e their in
uen
e, by de�ning a target as a 
onjun
-tion of parts and/or attributes. As more image features are used to identify a target,the number of visual phenomena that may potentially distra
t the tra
king pro
essis redu
ed. Even if something of the same 
olor is near the target, for example, itmay be of the wrong shape, or another part of the obje
t may not be distra
ted, al-lowing tra
king to pro
eed without interferen
e. An atomi
 tra
ker with temporarilyweak dis
riminatory power 
an over
ome diÆ
ult image 
onditions be
ause of the
onstraints imposed by its linkage to other tra
kers. These for
e 
onsideration of theentire ensemble of parts and attributes simultaneously when interpreting the image,helping to rule out in
orre
t alternatives. Constraints are only appli
able, of 
ourse,when we are tra
king a target 
omplex enough that it has multiple resolvable parts



105and/or attributes. This is 
ertainly true of many of the types of obje
ts that we wishto tra
k, su
h as people or 
ars, be
ause they are amenable to des
ription as a set ofsimpler, geometri
ally-
onne
ted features under most image 
onditions.In this 
hapter we analyze the impli
ations on the tra
king pro
ess of the knowl-edge that two or more of the targets are physi
ally 
onne
ted. A linkage betweentargets means that they are parts of some larger obje
t, and that their states aretherefore not independent. This disallows the de
omposition of the joint state priorp(X1; : : : ;XT ) = p(X1) � � �p(XT ) in Equation 5.3 that is a vital step in both theJPDAF and Joint Likelihood Filter multiple-obje
t tra
king algorithms.As with the joint image likelihood pJ(I jXJ) in the previous 
hapter, we needa more 
omplex formulation of p(X1; : : : ;XT ) that takes into a

ount the intera
-tions between obje
ts. Rather than predi
ting the visual results of bringing multiple,possibly independently-moving obje
ts into a proximate or overlapping relationship,though, the joint state prior will be 
on
erned with how multiple linked obje
ts in
u-en
e one another's states, even at a distan
e. In
orporating 
onstraint informationsu
h as this 
an have a salutary e�e
t on tra
king performan
e by (a) shrinking sear
hspa
e, making pro
essing faster for ea
h frame, and (b) dis
ounting or eliminatingfrom 
onsideration joint events/measurements that do not re
e
t expe
tations aboutthe interrelationship of the linked parts.In the next part of this 
hapter we introdu
e an extension to the Joint LikelihoodFilter (JLF) 
alled the Constrained Joint Likelihood Filter, or CJLF, that implementsinter-part 
onstraints eÆ
iently and simply. We then present results demonstratinghow the CJLF improves tra
king performan
e in many visual situations over thepreviously des
ribed algorithms, and enables 
ertain tra
king tasks to be 
arried outfor whi
h those algorithms are not suited.



1066.1 Constrained Joint Likelihood FilterThe JLF assumes that targets move independently of one another. An obje
t su
has a human body, though, violates this requirement when viewed as a group ofparts: the 
onne
tions between the arms, head, torso, et
. limit the possible rangeof their relative positions and motions. The expe
tation that parts or attributes of a
omplex tra
ked obje
t will be in a parti
ular 
on�guration is extra information thatmay help distinguish the obje
t from the ba
kground or other obje
ts. In this se
tionwe des
ribe modi�
ations we have made to the JLF to en
ode these relationships.We 
all this method the Constrained Joint Likelihood Filter (CJLF), diagrammedin Figure 6.1.The key idea behind the CJLF is an elaboration of one of the most basi
 kindsof 
onstraints: limitation of the number of parameters in an obje
t's state, whi
hin turn redu
es the size of its measurement spa
e. We have been using this formof 
onstraint for atomi
 tra
kers already when we analyze the obje
t, the tra
kingtask, and the visual environment in order to de
ide whether to allow the tra
ker totranslate, s
ale, rotate, or even shear (for snakes). If the obje
t to be tra
ked onlyslides ba
k and forth horizontally, for example, or rotates in pla
e, then there is noreason to give the tra
ker more than the minimal degrees of freedom required tofollow that 
lass of movement. To do otherwise only provides the tra
ker with anopportunity to mistra
k along an extraneous state dimension.For a multi-part or multi-attribute obje
t, there are multiple tra
kers for whi
hthis kind of de
ision must be made. The CJLF simply formalizes the 
ommonsensenotion that a minimal state des
ription of the entire obje
t (or, more exa
tly, thatportion whi
h is being tra
ked) implies 
ertain 
orrelations between and limitationson the states of its 
onstituent parts and attributes. As an example, suppose that



107we want to tra
k the headlights of a tru
k driving dire
tly toward the 
amera. Anaive approa
h is to give ea
h tra
ker a state with translation and s
ale parameters:Xleftlight = (xl; yl; sl) and Xrightlight = (xr; yr; sr). However, we know that the twolights are physi
ally 
onne
ted by the tru
k 
hassis and as su
h 
annot move inde-pendently. Our state des
ription is thus under
onstrained, and a 
ursory analysis ofthe frontoparallel geometry of the tru
k grille indi
ates that Xleftlight 
an be imme-diately derived from Xrightlight (or vi
e versa). In other words, only 3 rather than 6variables are ne
essary to fully des
ribe the system, though image pro
essing at bothlo
ations of 
ourse yields more robust estimation than at one alone.Ordinarily, a spe
ial-purpose tra
ker with a 
ustomized image likelihood fun
tionp(I jX) is 
reated for tra
king a 
ompli
ated obje
t like the one in the example above.The CJLF is a framework for a
hieving the same performan
e as a 
ustomized ap-proa
h, but in a 
exible fashion that avoids the 
onstru
tion of a spe
ialized imagelikelihood fun
tion for ea
h new tra
king task. Rather, the CJLF works by providinga small set of rules for 
omposing the simple, atomi
 tra
kers that we have alreadydeveloped into more 
omplex assemblages for whi
h the joint image likelihood re-mains a produ
t of 
omponent likelihoods. The rationale for this de
ision is twofold:(1) to redu
e the amount of time spent on analysis and 
ode writing for novel tra
k-ing tasks by permitting 
ode reuse, and (2) to provide a standard interfa
e for newmethods to easily be integrated with existing ones.The 
ompositional primitives used by the CJLF are based on intuitive physi
alrelationships su
h as rigid links, hinges, and �xed depth orderings. Given a set ofparts or attributes with un
onstrained state spa
es X1; : : : ;XT , these rules serve as aguide for paring them down to their minimal, 
onstrained forms: X 01; : : : ;X 0T . Whenthe paring removes all degrees of freedom of a tra
ker, as would o

ur with oneof the headlights from the example above, its state spa
e be
omes empty. It is still
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Constraints�Measurement Generationt1; : : : ; tT?Asso
iationProbabilitiest1 ?Asso
iationProbabilitiestT?StateEstimationt1 ?StateEstimationtTFigure 6.1: Constrained Joint Likelihood Filter pipelinedesirable to perform image pro
essing for that tra
ker (su
h as looking for the se
ondheadlight), so as a matter of bookkeeping the notion of the tra
ker is retained. Thispro
ess is the primary method by whi
h 
onstraints are introdu
ed into the jointprior on states p(X1; : : : ;XT ).In addition to redu
ing the degrees of freedom available to some of the tra
kers,the CJLF's 
ompositional rules also indi
ate how to derive the image pro
essingvariables of linked parts from one another (e.g., where the left headlight is if weknow the position and s
ale of the right headlight). The details of this derivationare expli
ated for ea
h of the rules in the next se
tion. Finally, though we do notuse them for any of the examples in this 
hapter, the CJLF allows hard limits to bepla
ed on state variables su
h as a range of permissible angles or s
ales. This allowsfurther spe
i�
ity in determining the form of p(X1; : : : ;XT ).For purposes of implementation, the Constrained Joint Likelihood Filter approa
halters the method of obtaining geometri
 image pro
essing parameters detailed inChapter 4. Let ea
h target tj have a measurement key Kj. Previously the domain ofea
h fun
tion inKj was Xj; we now extend it to the joint state spa
e X J . This allows



109us to refer to the 
omponent measurement geometri
 parameters of any target ti tode�ne tj's 
omponent measurement geometri
 parameters. A 
aveat is that 
aremust be taken that there are no 
ir
ularities in the de�nitions of the Kj for thevarious targets. Nonetheless, this 
onstitutes a 
onvenient and powerful me
hanismfor enfor
ing 
onstraints.The e�e
t of this redu
tion in the joint state spa
e is to alter the Joint LikelihoodFilter so that it 
onsiders only those joint state samples whi
h satisfy the 
onstraintsexa
tly, allowing their joint probabilities to be 
omputed normally. Sampling andhill-
limbing 
an then be used as in the previous 
hapter while still meeting the
onditions on the interrelationship of the parts. However, as with the JPDAF andJLF, only one measurement is ultimately used to update the state. This is be
ausethe weighted 
ombination of measurements 
arried out by the PDAF �lters 
an giverise to states not satisfying the 
onstraints.6.1.1 Rigid link 
onstraintsThe simplest kind of 
onstraint between measurements is a rigid link. By our de�-nition, a rigid link between two obje
ts t1; t2 implies that t2's 
urrent geometri
 pa-rameters are 
ompletely determined by their initial values and t1's 
urrent values|ithas no state or measurement spa
e of its own to speak of. Its only fun
tion is to
ontribute to the 
al
ulation of the joint image likelihood p(I jX1;X2). Thereforet2 does not use a Kalman �lter to estimate its own state; its purpose is as an ad-jun
t that makes t1 a more 
omplex visual obje
t. As an example, suppose that tworigidly-linked obje
ts are allowed to translate, s
ale, and rotate, and that the initialo�set between them s
ales as they do. This joint obje
t 
on�guration is diagrammedin Figure 6.2(a). Then X1 = (x1; y1; s1; �1) and K1 = (x1; y1; s1 �w1; s1�h1; �1)T , whilethe geometri
 image pro
essing parameters of t2 are 
al
ulated dire
tly from the
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�x1; �y1 ��1

�x2; �y2 ��2 �x1; �y1 ��1

�x2; �y2 ��2
�xh; �yh ��h(a) (b)Figure 6.2: Constraint types. (a) Initial 
on�guration of a rigid link; (b) Initial
on�guration of a hinge.following:

K2 =
0BBBBBBBBBBB�

x1 + s1(Æx 
os(�1 � ��1)� Æy sin(�1 � ��1))y1 + s1(Æx sin(�1 � ��1) + Æy 
os(�1 � ��1))s1 �w2s1�h2�1 + Æ�
1CCCCCCCCCCCA (6.1)

where Æx = �x2 � �x1, Æy = �y2� �y1, and Æ� = ��2� ��1. It is 
onvenient to represent therigid link transformation that takes the geometri
 parameters of obje
t i to those ofobje
t j as a fun
tion Ri;j. Thus, K2 = R1;2(K1).It is straightforward to generalize a two-part, rigidly-
onstrained joint obje
t toa T -target system. T rigidly-linked parts 
an be modeled by treating them as T � 1linked pairs, every one of whi
h in
ludes target t1, whi
h has a state, measurementspa
e, and measurement key exa
tly like the �rst obje
t in the example above. Thenfor all i > 1, target ti has no state or measurement spa
e, like the se
ond obje
tin the example, and its measurement key Ki is of the same form as that given inEquation 6.1, ex
ept that the appropriate initial parameters �xi; �yi; ��i; �wi, and �hi are



111substituted where �x2; �y2; ��2; �w2, and �h2 appear, respe
tively. Using the fun
tionalnotation, Ki = R1;i(K1).6.1.2 Hinge 
onstraintsA somewhat more 
omplex 
onstraint is a hinge (we avoid the more 
ommon term\joint" be
ause of its other 
onnotations in this dissertation). A hinge is similar toa rigid link but with an angular degree of freedom granted to the se
ond obje
t;the axis of rotation is determined by the initial image lo
ation of the hinge: �xh; �yh(see the diagram in Figure 6.2(b)). Using the two-part joint obje
t from above asan example, if we allow the ensemble to translate, s
ale, and rotate freely and these
ond part to rotate independently about the hinge, then the state of the �rst partis again X1 = (x1; y1; s1; �1) and K1 = (x1; y1; s1 �w1; s1�h1; �1)T . However, the stateof the se
ond part is now X2 = (�2), where the angle represented by �2 is relativeto the ray from (x1; y1) through the 
urrent hinge lo
ation (xh; yh). Following thederivation for a rigid link,0B� xhyh 1CA = 0B� x1 + s1(Æ�hx1 
os(�1 � ��1)� Æ�hy1 sin(�1 � ��1)y1 + s1(Æ�hx1 sin(�1 � ��1) + Æ�hy1 
os(�1 � ��1)) 1CA (6.2)where Æ�hx1 = �xh � �x1 and Æ�hy1 = �yh� �y1. If the initial value of the hinge angle is ��h,the geometri
 parameters of the se
ond obje
t are:
K2 =

0BBBBBBBBBBB�
xh + s1(Æ+hx2 
os(�2 � ��h)� Æ+hy2 sin(�2 � ��h))yh + s1(Æ+hx2 sin(�2 � ��h) + Æ+hy2 
os(�2 � ��h))s1 �w2s1�h2�1 + �2 + Æ� � ��h

1CCCCCCCCCCCA (6.3)



112where Æ+hx2 = �x2 � �xh and Æ+hy2 = �y2 � �yh. The hinge transformation between obje
tsi and j is denoted by Hi;j.We 
an also extend the mathemati
s of a single hinge 
onstraint to a systemof multiple hinges. T parts 
onne
ted in sequen
e by T � 1 hinges form what is
ommonly 
alled a 
hain [22℄. Let C be a 
hain 
onsisting of T hinge-
onne
ted parts:C = (t1; : : : ; tT ). We 
an spe
ify the 
onstraint on ea
h part along C indu
tively: ifthe �rst and se
ond links t1; t2 are de�ned by the two-part system introdu
ed above,then the state of the ith part for i > 1 is Xi = (�i) and its measurement spa
eis Zi = �. Given the measurement key K1 of the �rst part t1, the measurementkey of the ith part ti is given by Ki = Hi�1;i(Hi�2;i�1(: : :H1;2(K1) : : :)). By writingHi�1;i(Ki�1), the 
al
ulations that lead to Ki�1 are assumed.Chains 
an also bran
h. Suppose the �rst part t1 in a 
hain whi
h 
arries itstranslational and s
aling degrees of freedom is 
alled the head, and the other partswhi
h only have an angular degree of freedom are 
alled tails. One 
hain Ca =(ta1 ; : : : ; taTa ) 
an be atta
hed to another Cb = (tb1 ; : : : ; tbTb ) at part tbi along Cb'slength by 
onverting ta1 to a tail and rede�ning Ca as Ca = (tb1 ; : : : ; tbi ; ta1 ; : : : ; tTa).6.1.3 Depth 
onstraintsAnother useful kind of 
onstraint is related to depth. When there is an expe
tationthat some subset of the obje
ts being tra
ked will not o

lude one another, we 
an
olle
t them into a depth group. Obje
ts in the same depth group are not maskedagainst one another during 
omputation of the joint image likelihood. When justi�ed,grouping obje
ts in this way is more eÆ
ient be
ause there are fewer depth orderingsto 
onsider for ea
h joint measurement.An obvious situation to whi
h depth groups apply o

urs when tra
king an obje
twith multiple attributes. Sin
e attributes represent qualities of a physi
al obje
t



113rather than the obje
t itself, multiple instan
es 
an be \layered" onto a single obje
twithout a�e
ting the visibility of any of them. When a person's fa
e, for example, istra
ked by both a textured region tra
ker (to 
apture appearan
e) and a homogeneousregion tra
ker (for skin 
olor), the two tra
kers are members of the same depth group.Depth groups are also appropriate for parts linked by 
onstraints under 
ertainviewing and motion 
onditions. Though these parts are spatially distin
t, if theyare physi
ally prevented from overlapping they 
an also be pla
ed in the same depthgroup. For example, 
onsider a person's arm viewed in pro�le as it moves parallel tothe image plane. Considering the upper arm and forearm as two parts tra
ked usingany modality, the joint limits of the elbow allow at most negligible overlap due todepth, and thus we 
an ignore this intera
tion. The depth-independent intera
tionsbetween parts that are illustrated in Figure 5.7 still apply to parts in the same depthgroup, however. When two parts abut ea
h other, even if neither is o

luded thereis still a 
hange in the ba
kground along some portion of their perimeters and thusa 
hange in ea
h part's expe
tations about 
olor 
ontrast and edge-�nding.6.2 ResultsThough a rigid link is a fairly simple 
onstraint, it 
an be used to good e�e
t, as the�rst two examples demonstrate.In Figure 6.3, we want to tra
k a white pawn in a visual environment that 
ontainsa similarly-
olored obje
t (a white rook) and a similarly-shaped one (a bla
k pawn).One obvious avenue is to try to tra
k the pawn by 
olor. We use a Joint LikelihoodFilter tra
ker 
onsisting solely of a homogeneous region initialized as shown in frame0 of Figure 6.3(d).1 There is negligible s
aling or rotation and movement is slow,1A single-obje
t JLF is not the same as a standard PDAF tra
ker be
ause of the way mat
hvalues are used in the 
omputation of the joint image likelihood pJ(I jXJ), but we use the JLF



114so we let the state be X = (x; y), making measurement spa
e Z = X � Y . Thehomogeneous region tra
ker sele
ts the single most likely of 50 samples using a statesampling 
ovarian
e of �X = � 50 00 50 � and improves it with Powell's method.This approa
h does not work, as illustrated in the frame sequen
e in Figure 6.3(d),be
ause the untra
ked white knight �ts the 
olor model well and attra
ts the pawnstrongly. The fundamental problem is the presen
e of a strong, persistent peak dueto the knight in the homogeneous region's image likelihood, depi
ted at frame 0 inFigure 6.3(a), that is not expe
ted by the Joint Likelihood Filter tra
ker. If theknight were also tra
ked, as was the 
ase with the two-obje
t example in Figure 5.10from the previous 
hapter, then the Joint Likelihood Filter would prevent mistra
king
aused by multiple peaks in the likelihood.Tra
king the pawn in a similar fashion with a snake alone yields better results:the pawn is rarely mistra
ked, but there is some noise in the state estimation due totransient distra
tions 
aused by pawn-like arrangements of edges, su
h as betweenthe �ngers. This improved performan
e 
an be predi
ted from the image likelihoodfor the snake psnake(I jX), represented as an image for I =frame 0 in Figure 6.3(b).We 
an 
onveniently draw the likelihood as an image for this example be
ause thedimensions and limits of Z 
orrespond exa
tly to the image width and height. Theintensity I(x; y) of ea
h pixel of the likelihood image is drawn a

ording to thefun
tion I(x; y) = 255 � psnake(I j (x; y)). The snake image likelihood has many moremaxima than that of the homogeneous region, but none are nearly as high as theone 
orresponding to the snake. This quanti�es our intuition that shape is a better
ue for this task than 
olor.Without knowing ahead of time whi
h modality, if any, is suÆ
iently distin
tivefor su

essful tra
king, a prudent strategy is to use multiple attributes simultane-here to make 
omparisons with the CJLF 
learer.



115ously. The 
onjun
tion of 
olor and shape results in a joint image likelihood pJ(I jXJ)with peaks only where both likelihoods phregion(I jX) and psnake(I jX) have peaks.This often redu
es distra
tions, as 
an be seen in the representation of pJ(I jXJ) inFigure 6.3(
).Formally, we 
an utilize the pawn's 
olor and shape simultaneously by modelingthe 
hess pie
e with two linked attributes|a homogeneous region and a snake|withthe 
onstraint that the 
enters of the region and snake be 
oin
ident. Arbitrarily,we let the homogeneous region tra
ker 
ontain the state X1 = (x1; y1), making itsmeasurement spa
e Z = X�Y . Its measurement key is the same as that of the �rstobje
t in the rigid link example above, without s
aling: K1 = (x1; y1; �w1; �h1; ��1)T .The snake tra
ker has no state and an empty measurement spa
e; its measurementkey is simple be
ause the link has a length of 0: K2 = (x1��̂x; y1��̂y; �q2; �q3; �q4; �q5)T .Both tra
kers are in the same depth group.The pawn's joint region-snake tra
ker follows the same regime of hill-
limbing onthe single best of 50 samples as the single-attribute tra
kers above. As Figure 6.3shows, this 
onstrained formulation permits the pawn to be su

essfully tra
ked whenthe homogeneous region alone fails. We have also observed that the estimated stateof the pawn is less errati
 using 
onjoined tra
kers than is obtained by using thesnake tra
ker alone.Another example of tra
king with the CJLF is given in Figure 6.4. In the inputsequen
e, a person walks from the left side of the frame slightly toward the 
ameraand then in pro�le to the right. Suppose we want to tra
k the person's fa
e asa homogeneous region with a single-part Joint Likelihood Filter tra
ker. Let thestate be X = (x; y; _x; _y; s) be
ause the fa
e translates relatively qui
kly and s
alesgradually but signi�
antly from the �rst frame to the last. Measurement spa
e isZ = X � Y � S; the best single sample of 50 is improved using Powell's method,
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(a) (b) (
)
0 50 100(d) One-attribute JLF tra
ker
0 50 100(e) Two-attribute CJLF tra
kerFigure 6.3: Multi-attribute Constrained Joint Likelihood Filter (MPEG). (a) phregion(I jX)for homogeneous region; (b) phregion(I jX) for snake; (
) pJ(I jXJ) for both; (d) A homo-geneous region JLF tra
ker is distra
ted by the white knight; (e) A CJLF homogeneousregion and snake tra
ker over
omes the distra
tion.



117where �X = � 50 0 00 50 00 0 0:001 �.A sequen
e of frames from one run of this tra
ker is shown in Figure 6.4(
).Be
ause of a somewhat skin-
olored bri
k wall in the ba
kground, poor lighting, anda suboptimal skin 
olor model, the dis
riminatory power of the fa
e tra
ker is verymarginal. This 
an be seen in Figure 6.4(a), whi
h shows the 
olor similarity 
fa
eof frame 0 to the fa
e. The fa
e tra
ker is distra
ted by a 
olumn of tan bri
ks inthe 
enter of the image; when the person emerges on the other side of the bri
ks,tra
king has failed. This o

urs for essentially the same reason as with the pawntra
king example above: the bri
ks are unmodeled, very similar to the target, andin 
lose proximity to it for too many frames.A tra
ker with the same �lter parameters 
an tra
k the red shirt through the samesequen
e without any problems, however. Figure 6.4(b), depi
ting 
shirt for frame 0,shows why the 
olor of the shirt is a mu
h more distin
tive 
ue than the fa
e's 
olorin this visual environment. The shirt is not a di�erent attribute of the fa
e like shapeand 
olor were for the pawn, but rather a di�erent part of the person's upper body.This suggests that we 
an improve the fa
e tra
ker's performan
e by exploiting itsphysi
al 
onne
tion to the shirt with a two-part Constrained Joint Likelihood Filtertra
ker.We impose the 
onstraint between the fa
e and shirt as a rigid link that s
ales withthe two parts but does not rotate (sin
e they do not). Letting the fa
e tra
ker 
ontainthe state X1 = (x1; y1; _x1; _y1; s1)) makes its measurement spa
e Z1 = X � Y � S.The measurement key of the fa
e tra
ker is K1 = (x1; y1; s1 �w1; s1�h1; ��1)T . The shirttra
ker has no state and an empty measurement spa
e; its measurement key is K2 =(x1 + s1Æx; y1 + s1Æy; s1 �w2; s1�h2; ��2)T , where Æx = �x2 � �x1 and Æy = �y2 � �y1. Thetra
kers are put in the same depth group.Figure 6.4(d) demonstrates that linking the shirt and fa
e tra
ker together in
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(a) (b)
0 60 120(
) One-part JLF tra
ker
0 60 120(d) Two-part CJLF tra
kerFigure 6.4: Multi-part Constrained Joint Likelihood Filter: Resisting a distra
ting ba
k-ground (MPEG). (a) Fa
e 
olor mat
h 
fa
e; (b) Shirt 
olor mat
h 
shirt; (
) One-partJoint Likelihood Filter tra
ker on the fa
e is distra
ted; (b) Two-part Constrained JointLikelihood Filter tra
ker on the fa
e and shirt su

eeds.



119this manner over
omes a distra
tingly fa
e-
olored ba
kground. The CJLF tra
kersometimes bobbles slightly as the fa
e passes in front of the bri
k 
olumn be
ause thetra
ker brie
y explores the possibility of not translating anymore and instead simplyexpanding to in
luding the bri
ks, the fa
e, and the shirt. This part of measurementspa
e is qui
kly dis
arded, however, as the proportion of non-mat
hes in the largerarea dilutes its �tness 
ompared to the 
orre
t interpretation. Phenomena su
h asthese are another reason why pure gradient as
ent tra
king is not always workable:when used here, the tra
ker gets stu
k in a lo
al maximum of state spa
e that
orresponds to expanding 
easelessly and 
annot jump to the better alternative asrandom sampling does.We should also note that the fa
e tra
ker is not just \along for the ride" as theshirt tra
ker smoothly pro
eeds. Though the shirt tra
ker may be the more valuablepartner, the joint image likelihood ensures that both 
omponents 
ontribute to thepro
ess equally (i.e., without regard to area, sin
e mean mat
h values are used).Indeed, be
ause the rigid 
onstraint without rotation is ne
essarily an approximation,the fa
e often for
es the joint state estimate to a 
ompromise s
ale and position thatbest in
ludes both regions, rather than �tting the shirt region with pre
ision andderiving the fa
e region estimate afterwards.A more 
ompli
ated situation whi
h shows the advantage of the Constrained JointLikelihood Filter over the Joint Likelihood Filter is shown in Figure 6.5. Here we wantto tra
k a person's hand and forearm as homogeneous regions while they shake handswith another person, who is not tra
ked. To a

ount for qui
kly 
hanging positionand angle, ea
h 
omponent (i = 1; 2) of the Joint Likelihood Filter tra
ker has astate of the same form: Xi = (xi; yi; �i; _xi; _yi; _�i), making their measurement spa
esZ1 = Z2 = X � Y � �. A

elerations during the handshake are too large for puregradient tra
king, so ea
h 
omponent tra
ker sele
ts the best 1 of 50 samples, where



120the state sampling 
ovarian
e is �X = � 50 0 00 50 00 0 0:02 �. This sample is then improvedusing Powell's method for gradient as
ent on the joint image likelihood fun
tion.The mat
h threshold for the homogeneous regions here is �hregion = 2. Despite thesemeasures, the hand tra
ker mistra
ks when its target is in 
lose proximity to theother person's hands (whi
h are not being tra
ked) due to distra
tion. The forearmtra
ker wanders up and down the sleeve be
ause there is no reason for it to remain�xed at one end.These short
omings 
an be eliminated by introdu
ing the 
onstraint that there isa hinge (i.e., the wrist) joining the hand and forearm tra
kers to one another at themidpoints of their abutting short sides. Formally, the state of the forearm tra
kerremainsX1 = (x1; y1; �1; _x1; _y1; _�1) and its measurement spa
e is alsoZ1 = X�Y ��.Its measurement key is the same as that of the �rst obje
t in the hinge exampleabove, without s
aling: K1 = (x1; y1; �w1; �h1; �1)T , and the sampling 
ovarian
e isalso �X1 = � 50 0 00 50 00 0 0:02 �. The hand tra
ker, however, has only one degree of freedom,and its state is just X2 = (�2; _�2), redu
ing the measurement spa
e to Z2 = �.Thus, the sampling 
ovarian
e for the hand is �X2 = � 0:02 �. The hinge angle isinitially 0, the hand and forearm have the same initial orientation, and there is nos
aling, simplifying the form of the hand's measurement key 
onsiderably 
omparedto Equation 6.3 to yield:
K2 =

0BBBBBBBBBBB�
x1 � 12 �w1 
os(�1)� 12 �w2 
os(�1 + �2)y1 � 12 �w1 sin(�1)� 12 �w2 sin(�1 + �2)�w2�h2�1 + �2

1CCCCCCCCCCCA (6.4)
where the hand and forearm are also 
onsidered to be in the same depth group.
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(a) (b)

(
) (d)Figure 6.5: Constrained joint likelihood: Using a hinge 
onstraint at the wrist to preventmistra
king during a handshake (MPEG). (a) Frame 0 of sequen
e of homogeneous regiontra
kers on hand and forearm; (b) A distra
ting situation: hand 
olor similarity 
 at frame260; (
) Running a Joint Likelihood Filter tra
ker for both parts, the hand tra
ker isdistra
ted by other person's hand (frame 260); (
) The Constrained Joint Likelihood Filterformulation permits a

urate tra
king of the hand (frame 260).Adopting this approa
h prevents the hand and forearm tra
kers from 
oatingapart; relatively higher joint image likelihoods keep the hinge at the sleeve-handborder. The result is that during the period of ambiguity when the two hands are
lasped together, a realisti
 interpretation of the situation is maintained and tra
kingpro
eeds 
orre
tly after the hands are fully separated.Another task to whi
h the CJLF is well suited is illustrated in Figure 6.6. In



122this 
ase we want to tra
k a person's whole arm, from shoulder to �ngertips, as theyraise their hand from a 
omputer mouse to their fa
e and lower it again. There isarti
ulation at the elbow and wrist, and the person's fa
e will not be tra
ked and istherefore an unmodeled distra
tor. Sin
e the person is wearing a short-sleeved shirt,we divide the arm into four areas and assign ea
h a tra
ker: the sleeve (i = 1), theexposed skin of the upper arm (i = 2), the forearm (i = 3), and the hand (i = 4).The wrinkles in the fabri
 of the sleeve provide good texture, so it will be tra
kedby a textured region; the other areas are tra
ked by homogeneous regions. Sin
e themovement is nearly all in a plane parallel to the image plane, we negle
t s
aling andfo
us on translation and rotation.Using the JLF, the state of ea
h tra
ker is Xi = (xi; yi; �i; _xi; _yi; _�i), makingea
h 
omponent's measurement spa
e Zi = X � Y � �. Powell's method is usedfor pure gradient as
ent on the joint image likelihood, with the best of all visibility-a�e
ting depth orderings serving as the starting point for hill-
limbing for ea
h frame.The initial arrangement of the tra
kers is shown in Figure 6.6(b), frame 0. Thismethod is able to follow the movement of the arm in a gross sense, but the degreesof freedom of ea
h tra
ker permit 
onsiderable shifting and rotational variability ofthe homogeneous region tra
kers along the arm. In parti
ular, the upper arm tra
kerdoes not maintain the 
orre
t position and the hand tra
ker is severely distra
ted bythe similarly-
olored fa
e as they separate (see Figure 6.6(a)). The textured regionsleeve tra
ker performs well throughout the sequen
e.The CJLF mitigates these problems to a large extent by exploiting the additionalinformation available about the 
onne
tivity of the di�erent areas of the arm. These
onstraints redu
e the degrees of freedom of ea
h tra
ker and e�e
tively boost theperforman
e of marginal tra
kers by deriving their state information from betterperforming tra
kers to whi
h they are linked. Under the CJLF, only the state of



123the textured region sleeve tra
ker is un
hanged: X1 = (x1; y1; �1; _x1; _y1; _�1). Itsmeasurement spa
e is Z1 = X�Y ��, and its measurement key is the same as thatof the forearm in the handshaking example: K1 = (x1; y1; �w1; �h1; �1)T . The upperarm tra
ker is rigidly linked to the sleeve tra
ker, so it has no state or measurementspa
e per se; its measurement key re
e
ts the rigid 
onstraint:
K2 =

0BBBBBBBBBBB�
x1 + b 
os(�1)� 12(�h1 + �h2) sin(�1)y1 + b sin(�1) + 12(�h1 + �h2) 
os(�1)�w2�h2�1

1CCCCCCCCCCCA (6.5)
where b = 6 is an o�set re
e
ting the fa
t that the sleeve hangs slightly belowthe arm. A 
ompressed expression for the upper arm measurement key is given byK2 = R1;2(K1).The forearm tra
ker is linked to the upper arm tra
ker via a hinge 
onstraintat the elbow, so its only free parameter is a relative angle. This makes its stateX3 = (�3; _�3) and measurement spa
e Z3 = �. The exa
t lo
ation of the hinge isat the midpoints of the abutting ends of the upper arm and forearm re
tangles; weforego the geometri
 derivation and de�ne the forearm tra
ker's measurement keyas K3 = H2;3(K2). Similarly, the hand is linked to the forearm by another hinge.Its state is X4 = (�4; _�4) and its measurement spa
e is Z4 = �. The wrist hinge islo
ated at the midpoints of the abutting ends of the forearm and hand re
tangles,making its measurement key K4 = H3;4(K3)The mat
h threshold of the sleeve tra
ker is �tregion = 30 and for the homogeneousregions it is �hregion = 2. All of the arm parts are in the same depth group be
auseof the viewing angle.



124As 
an be seen from Figure 6.6(
), the mixture of rigid and hinge 
onstraintsbetween the four parts of the arm 
onsiderably improves tra
king performan
e. Theparts maintain their relative positions and angles along the arm quite well, andthe untra
ked fa
e 
auses no appre
iable problems throughout its overlap with thesimilarly-
olored hand.
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(a) Arm 
olor similarity 


0 30 60
90 120 150(b) Joint Likelihood Filter
0 30 60

90 120 150(
) Constrained Joint Likelihood FilterFigure 6.6: Tra
king an arm in four se
tions (MPEG). (a) Fa
e is distra
ting to handtra
ker (frame 130); (b) Frame sequen
e using JLF; (
) Frame sequen
e using CJLF.



Chapter 7
Related Work
In this 
hapter we dis
uss previous work on tra
king and its relationship to the frame-work presented in this dissertation. In the �rst se
tion we 
over other approa
hes totra
king single obje
ts, in
luding the modalities used and the underlying state up-date algorithms. The se
ond se
tion surveys other work on jointly tra
king multipleobje
ts and how it di�ers from ours. Finally, we summarize previous resear
h on
ombining di�erent modalities and adding 
onstraints between tra
kers in order toa
hieve more robust tra
king.7.1 Single Obje
t Tra
king7.1.1 ModalitiesThe image 
ues|
olor, texture, motion, shape, depth, and so on|that have beenused for tra
king are quite varied. Typi
ally, a single attribute is used to dis
riminatean obje
t from the rest of the s
ene, making the sele
tion of an identifying attributequite important in determining the performan
e of the tra
ker. In this se
tion weexamine vision resear
h related to 
olor, texture, and shape as tra
king modalities,126



127as well as other 
urrently popular and possible future 
ues.ColorThere have been numerous approa
hes to 
olor representation for tra
king and sear
h.Swain's 
olor histogram [114℄ is one popular method. The 
olor 
omponents of thepixels within an obje
t are histogrammed; a histogram interse
tion 
an be 
omputedbetween this histogram and an area of the image to test the similarity of the two.A useful feature of this algorithm is its ability to de�ne an obje
t as 
onsisting ofmultiple 
olors in 
ertain proportions (e.g., 34 red and 14 blue). However, there is nofa
ility for spe
ifying their relative geometri
 distributions (e.g., red above blue).For example, Bir
h�eld's ellipti
al head tra
ker uses 
olor histograms [11℄. Colorspa
e is a transformation of RGB spa
e that en
odes 
hrominan
e in two parametersG � R and B � G of eight bins ea
h and luminan
e in the third, R + G + B, withfour bins. The degree of mat
h between the pixels in a postulated ellipse lo
ationand the histogram model is given by the histogram interse
tion formula in [114℄.In the same vein, Bradski tra
ks a person's fa
e in [19℄ with a window that istranslated and s
aled to maximize the �t of the pixels it 
ontains to the fa
e 
olormodel. This model is built by sampling skin-
olored pixels and making a histogramof their hues (the �rst 
omponent in HSV spa
e); image pixels whose hues fall intohigh-
ontent bins are assigned proportionally high probabilities of being skin-
olored.Pixels with low intensities or saturations have very noisy hues, so these are ignored.Fle
k et al. expli
ate a sear
h pro
edure that relies on 
olor and geometry todetermine whether there are naked people in images in [42℄. Skin-
olored pixels aresegmented with ranges in hue and saturation values after a log-opponent transfor-mation of RGB spa
e adapted from [46℄. Darrell et al. use a similar log-opponent
olor representation for fa
e tra
king in [31℄.



128The P�nder system [122℄ models parts of a person's body su
h as their fa
e, hands,and shirt with 5-D Gaussian ellipsoids, or blobs: a 2-D image spatial 
omponent plusa 3-D 
olor 
omponent in Y UV spa
e. Ea
h ba
kground pixel is modeled with a 3-DGaussian in Y UV spa
e. A spe
ial step attempts to dete
t whether part of a blobis in shadow, and if so, the 
olor 
omponents are normalized by intensity as follows:U� = U=Y , V � = V=Y .Similarly, [20℄ tra
ks blobs as Gaussian ellipsoids with a 2-D spatial 
omponent,an opti
al 
ow 
omponent 
omprising either translation and rotation or aÆne motion,and optionally a 2-D 
olor 
omponent in HSV spa
e.Stau�er and Grimson [113℄ adaptively model individual ba
kground pixels with amixture of Gaussians in RGB or HSV spa
e. They use a Gaussian not for modelingthe variation in 
olor over the extent of an obje
t, but rather its variation over timeat a single image lo
ation due to sampling noise. The Gaussian mixture a

ounts forsu
h phenomena as trees swaying, light glinting, monitors 
i
kering, et
. that 
anresult in multiple 
ontributions to a pixel's 
olor.SSDEarly work on image 
orrelation for tra
king was reported in [1, 80℄. Shi and Tomasire�ne this approa
h and des
ribe a te
hnique for �nding textured image pat
hes andtra
king their aÆne motion in [109℄. There is 
onsiderable overlap between this SSDwork and the motion estimation resear
h typi�ed by [9℄.Hager and Belhumeur exhibit a solution in [51℄ to the problem of SSD tra
kingwhen there are variations in obje
t pose and in the 
ontrast, intensity, and thedire
tion of the light sour
e. The method assumes that the surfa
e of the obje
tbeing tra
ked is rigid, Lambertian, and that there is no self-shadowing.A larger set of in
uen
es on image appearan
e are 
onsidered in [12℄. Image
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hange is explained as a mixture of 
auses su
h as motion (in
luding non-rigid),illumination variation, spe
ularities, and i
oni
 
hanges (obje
t-spe
i�
 o

lusionsand material 
hanges su
h as teeth appearing and disappearing as a person's mouthopens and 
loses). The EM algorithm is used to determine the 
ontributions of thevarious models. Results are only given for the three possible pairs of models thatin
lude motion.The a
tive blob method of [106℄ de�nes an obje
t model in terms of a deformable3-D mesh to 
apture shape and a 
olor texture map for its appearan
e. The obje
tmay bend and twist as it moves, and global intensity and 
ontrast variations are 
om-pensated for. A Lorentzian in
uen
e fun
tion [14℄ repla
es the standard quadrati
SSD error norm in order to a
hieve more robust tra
king in the presen
e of outliers
aused by spe
ularities and small o

lusions. Robust statisti
s are also dis
ussedfor SSD tra
king in [51℄. Though we have not adopted them here, robust statisti
alformulations of the image likelihoods p(I jX) for all three of our modalities wouldlikely improve their tra
king performan
e in 
ertain 
ir
umstan
es.ContoursAn early formulation of the 
ontour tra
king problem is given by Kass et al. in [72℄using energy fun
tionals. Under their de�nition, a snake is a spline whose shape isdetermined by the sum of three for
es: an internal for
e that governs the smoothnessof the 
urve, an external for
e that guides the initial pla
ement of the snake, andan image for
e that attra
ts the snake to edge and line features. Intensity and thegradient are two quantities that 
ontribute to the image for
e. The method is appliedprimarily to �tting shapes in single images, but an example of lip tra
king is alsogiven.A somewhat di�erent approa
h to snakes is taken by Blake et al. in [16, 18℄. Their



130B-spline representation permits a detailed des
ription of the 
urve's shape, whi
hthey 
all a template. However, only low-dimensional deformations of the template(e.g., an aÆne transformation) are allowed to represent the evolving state of the 
urveafter initialization. The 
onstraints on permissible shapes are derived for variousassumptions about the 
urve and its motion, su
h as planarity, in-plane motion,et
. Redu
ing the size of the shape spa
e avoids un
onstrained movement of theB-spline 
ontrol points, whi
h 
an often result in mistra
king. With tuned priorson obje
t dynami
s, this te
hnique demonstrates robust, real-time tra
king of fast-moving hands and lips [17℄.In the same spirit, an ellipse with a �xed aspe
t ratio serves as a shape model fortra
king a person's head in [11℄. The ellipse is allowed to rotate, s
ale, and translatein order to maximize an edge mat
h formula that favors a large gradient magnitudeat ea
h point along the oval's perimeter in 
onjun
tion with a gradient dire
tion thatis also normal to the 
urve at that point.A learned subspa
e model for 
ontour tra
king is presented in [26℄ and [8℄. Theyuse prin
ipal 
omponents analysis (PCA) on a set of outlines of obje
ts to 
omputetheir range of motion and use this to parametrize the possible 
urve shapes duringtra
king. This approa
h is applied to B-splines to tra
k the silhouettes of walkingpeople in [8℄.Other modalitiesThere are many other potential modalities suitable for use in tra
king besides 
olor,appearan
e, and shape. In this se
tion we review a few of the most frequently used.Perhaps one of the most popular 
ues for tra
king is motion. With a �xed 
amera,simple di�eren
ing between su

essive frames is suÆ
ient to lo
alize motion andhen
e serve as a basis for segmentation in the same way that we use 
 for 
olor.



131The target may stop moving from time to time, though; one way around this is to
ompare the 
urrent frame to a referen
e image without the target in it (i.e., theba
kground). P�nder [122℄ 
omputes a per-pixel ba
kground 
olor model that is avital 
omponent in lo
alizing the tra
ked person. Ba
kground models are also usedfor person tra
king in [103℄ and for person and 
ar dete
tion and tra
king in [113℄.Going further, one 
an also use opti
al 
ow to extra
t dire
tional information.Cutler and Turk [30℄ 
ompute opti
al 
ow and segment it into blobs to 
lassifywaving, 
lapping, 
apping, and other motions of a person's hands. When the 
ameraitself is in motion, more sophisti
ated te
hniques that 
ompensate for egomotionmust be used. A possible pre
ursor to motion-based tra
king is an algorithm for
omputing a layered representation of multiple motions in a s
ene, in
luding that ofthe ba
kground, given in [105℄. Irani and Anandan des
ribe a system along theselines for dete
ting and tra
king moving obje
ts while moving in [58℄.Stereo or other depth 
ues are another obvious 
andidate for use in tra
king. Astereo version of P�nder 
orrelates 
olor blobs from two 
ameras for depth estimation[3℄. Darrell et al. segment fa
es by intensity from a disparity map 
omputed by ahardware stereo solution [31℄. Spe
ialized hardware su
h as Kanade's ma
hine for
omputing a dense depth map at frame rate [70℄ and Konolige's low-
ost board forobtaining a somewhat 
ruder depth estimate [77℄ have re
ently made this modalitymu
h more pra
ti
al.Indeed, a frequent obsta
le to adopting otherwise promising 
ues as tra
kingmodalities is the 
omputational expense asso
iated with them. Virtually any methodthat segments an image into regions sharing some 
ommon visual property or sear
hesfor mat
hes in an image database 
ould potentially be the basis of a tra
king al-gorithm. Though there are a number of diverse segmentation and edge dete
tionalgorithms that yield ex
ellent results, many take on the order of hours or more for



132ea
h image, rendering them unusable for real-time tasks. Nonetheless, as these algo-rithms are 
oded more eÆ
iently or fast approximations are found for them, and as
omputing power 
ontinues to in
rease geometri
ally, they 
ould soon �nd their wayinto a tra
king framework su
h as ours.7.1.2 Tra
king methodsThere are a few standard ways that modalities have typi
ally been used for tra
king.Histori
ally, a 
ommon method has been to de�ne a modality-spe
i�
 error fun
tionthat measures the degree of mat
h between a hypothesized obje
t state and the imageeviden
e and do gradient as
ent or des
ent on it. A related but distin
t approa
h isto frame the tra
ked obje
t parameters as the solution to a set of equations, leadingto another set of iterative methods for zero-�nding. When the system of equations isover
onstrained, least-squares te
hniques are employed [94℄. Many resear
hers havefound it advantageous to extend this basi
 approa
h with a Kalman or similar �lter.A Kalman �lter smooths the state estimate in the fa
e of noisy data and allows theaddition of dynami
s (velo
ity, a

eleration, et
.) to the state for better predi
tivepower. More re
ently, there has been 
onsiderable interest in the Condensationalgorithm [59℄, a randomized estimation pro
edure that exhibits good performan
ewhen there is visual 
lutter that may distra
t a standard Kalman �lter. In this se
tionwe dis
uss these three tra
king paradigms and their relationship to the frameworkpresented in this dissertation.The interested reader is also referred to a number of other randomized opti-mization methods su
h as simulated annealing [87℄, RANSAC [41℄, and the geneti
algorithm [47℄. They might also prove adaptable to tra
king, though thus far therehas been little work along these lines.



133Iterative algorithmsKass et al.'s energy minimization method for 
ontour tra
king [72℄ is an example ofgradient as
ent (or rather, des
ent) for tra
king. For ea
h new image, the energyterms give rise to a system of equations that is solved using LU de
omposition toyield a new parametrization of the snake's shape.SSD [51℄ is an iterative method that assumes small motions between frames. Thisallows a Taylor series approximation of the error norm 1jRjPx;y2R(Î(x; y)� I(x; y))2that leads to a system of linear equations. Solving this system yields the motionparameters that take the pixels in region R from the referen
e image to the image Îthat is best registered with the 
urrent image I. Other resear
h on motion estimationmethods relying on image 
orrelation (su
h as [9℄) often in
orporates a 
oarse-to-�neimage pyramid to handle larger motions and allows multiple iterations of gradientas
ent before 
onvergen
e.A robust error norm quanti�es the degree of �t between the image and a warpedtemplate for the a
tive blob tra
ker in [106℄. The Levenberg-Marquardt method [94℄is employed to 
ompute the values of the deformation and photometri
 variables thatminimize this error. These new values be
ome the tra
ker's state in the next frame.Bradski's fa
e tra
ker [19℄ and an early version of our 
olor tra
king work [95℄are based on pure gradient as
ent. The similarity to a parti
ular 
olor of the pixelswithin a re
tangular tra
king window 
entered at pi is measured; let the 
enter ofmass of these pixels (weighting more similar pixels more heavily) be p̂i. If the imagedistan
e jpi�p̂ij > � for some threshold �, pi+1 is set to p̂i and the pro
ess is repeateduntil 
onvergen
e on the same image. Within the tra
king window the moments ofthe 
olor similarity distribution are 
omputed to estimate the area and angle of thetra
ked obje
t, optionally guiding the size of the tra
king window.
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h�eld's head tra
ker [11℄ elaborates somewhat on this approa
h. The tra
keruses an ad-ho
 s
heme for velo
ity estimation, and within some 
onstant size neigh-borhood of the predi
ted head 
on�guration (in
luding lo
ation, s
ale, and orien-tation) hypothesizes and tests possible head 
on�gurations. The highest-s
oring
on�guration in this neighborhood be
omes the new state of the tra
ker.For generality, we have 
hosen to use 
onjugate gradient or Powell's method forgradient as
ent on the image likelihood and joint image likelihood. A modality-spe
i�
 analysis like that 
arried out in [51, 106℄ may yield a faster te
hnique fora parti
ular obje
tive fun
tion, but employing a 
ommon method for all modalitiesmakes adding new ones mu
h easier, and we have found that only a modest numberof iterations of gradient as
ent are usually suÆ
ient to signi�
antly improve a statesample.Kalman �lteringP�nder [122℄ does not use a Kalman �lter, but it updates ea
h blob's parameters byblending the se
ond-order statisti
s of the pixels mat
hed to it with prior knowledgeand an approximate dynami
al model. The pro
edure for doing this is not detailed.Snakes are pla
ed in a Kalman �ltering framework in [117℄. This allows dynami
sto be part of the state estimation pro
ess, as opposed to the purely gradient-drivenapproa
h of [72℄. However, the dynami
s are 
hosen somewhat arbitrarily. Thesnake-tra
king systems des
ribed in [17, 18, 100℄, on the other hand, attempt to learnsophisti
ated dynami
al models of their targets' motions from example sequen
es.With su
h training the hand tra
kers in [17, 18℄ and lip tra
ker in [17℄ are able tofollow 
ertain agile motions than untuned tra
kers 
annot, as well as less sus
eptibleto mistra
king due to ba
kground distra
tors.In this dissertation we have not fo
used on building elaborate dynami
al models



135be
ause they are often quite target-spe
i�
|the dynami
s of a hand waving do notapply to a knee bending, et
. We assert, and the authors of [18℄ 
on
ede, thatthis 
an restri
t the ease of reuse and range of appli
ability of a tra
king algorithm.Rather, we have strived to 
reate a framework that 
an handle multiple 
lasses ofobje
ts (
ars, people, 
hess pie
es, airplanes, et
.) undergoing a variety of motions.Notwithstanding the simpli
ity of the dynami
s we do use, we 
laim that the randomsampling method for measurement generation outlined in Chapter 4 yields robustperforman
e in the presen
e of qui
k a

elerations and dire
tion 
hanges. Dealingsu

essfully with su
h phenomena is a large part of what tuned dynami
al modelsare designed to handle.Another reason why we have not used detailed dynami
al models is be
ause wewish to emphasize the data asso
iation aspe
t of the tra
king problem. Though thepapers about them rarely say so expli
itly, nearly all of the visual tra
kers based onthe Kalman �lter use what is 
alled the nearest-neighbor (NN) method for measure-ment generation. This follows naturally from the use of gradient as
ent to 
omputea single measurement for ea
h new image. As the dis
ussion in Chapter 4 indi
ates,this approa
h is only guaranteed to work when the obje
tive fun
tion is unimodal. Amultimodal obje
tive fun
tion, or image likelihood as we 
all it, violates the assump-tions of su
h algorithms. The PDAF, JPDAF, and Joint Likelihood Filter (JLF),
onversely, a
knowledge and deal with multimodality expli
itly. Doing so obviatesmu
h of the need for highly spe
i�
 dynami
al models whi
h serve to de�ne thetarget more pre
isely and thus redu
e the 
han
e of distra
tion. Relying on well-tuned dynami
 models is a
tually similar in spirit to our strategy in Chapter 6 ofusing 
onjun
tions of attributes and 
onstraints to de�ne the tra
ked obje
t moredistin
tively.



136CondensationThe Condensation algorithm is a sto
hasti
 tra
king te
hnique that was introdu
edin [59℄ (a more detailed exposition and further extensions are reported in [62, 60,61, 63℄). Its purpose is to fa
ilitate tra
king in situations where the image likelihoodis non-Gaussian or multimodal. Condensation was originally developed for snaketra
king; examples of obje
ts tra
ked in
lude a person's head and shoulders, thespread �ngers of a hand against a 
luttered desktop, and a leaf on a bush [60℄.Re
ently, it has been applied to other problem areas su
h as mobile robot navigation[34℄ and gesture re
ognition [13℄.The way that the Condensation algorithm works is by approximating the poste-rior probability of the state p(X jI) with a set of weighted samples using the fa
toredsampling algorithm of [49℄ (hen
eforth we subs
ript by t to indi
ate time). At timestep t, let there be N samples s(i)t with weights �(i)t su
h that PNi=1 �(i)t = 1. Thisset of samples and their weights f(s(i)t ; �(i)t )g is obtained from those of the previoustime step f(s(i)t�1; �(i)t�1)g via a sto
hasti
 dynami
al model whi
h makes a predi
tionwhile in
reasing un
ertainty, plus a measurement pro
ess whi
h tends to redu
e un-
ertainty. The �rst step is one of sele
tion: N samples are drawn with repla
ementfrom fs(i)t�1g, 
hoosing a parti
ular s(i)t�1 with probability �(i)t�1. This means that somesamples may be 
hosen more than on
e, and some not at all. Se
ondly, the predi
-tive step, or drift, moves all 
hosen samples deterministi
ally a

ording to the 
urrentestimate of velo
ity, a

eleration, and the like. An in
rease in un
ertainty in the ab-sen
e of information is simulated by di�usion, whi
h moves ea
h sample randomlyand independently to its new position s(i)t . Finally, the measurement step assigns anew weight to ea
h sample by measuring all of their image likelihoods and normaliz-ing: �(i)t = p(It jXt = s(i)t )=PNj=1 p(It jXt = s(j)t ). The samples are initialized before



137tra
king begins with a uniform distribution and equal weights.If we think of the N samples as 
omputational resour
es, the fun
tion of thesele
tion step be
omes 
learer. Its tenden
y is to redistribute these assets so thatthey be
ome sparser in less promising areas of state spa
e, fa
ilitating a more eÆ-
ient sear
h. Over time, the normalization of the weights serves a winner-take-allfun
tion by 
on
entrating samples in the vi
inity of the most likely state, while stillo

asionally exploring less-likely regions of state spa
e. If the target is be
omes 
om-pletely o

luded or leaves the image, the samples di�use through state spa
e sin
ethere is no measurement reinfor
ement 
ausing them to 
ongregate. Widening thesear
h in this manner is a good strategy for looking for the lost target to reinitializetra
king. Condensation's steady-state tra
king and lost-target rea
quisition make ita robust algorithm for sear
hing for the global maximum, or MAP state estimate, ofthe time-varying distribution p(X jI).In [59℄, the authors assert that a method su
h as Condensation is ne
essarybe
ause Kalman �ltering is inadequate for tra
king in 
luttered or distra
ting visualenvironments. Though they do not say so expli
itly, they seem to be referring to theNN approa
h to measurement generation for snakes given in [117℄, whi
h 
ertainly isvulnerable to 
lutter. An NN Kalman �lter 
onsiders only one alternative to updatethe state for ea
h image. As we dis
ussed in Chapter 4, this means that there is anon-zero probability of 
hoosing in
orre
tly, and with in
reasing ba
kground 
lutterthe 
han
e of making a mistake only goes up. Mistakes 
an be re
overed from,but a su

ession of wrong 
hoi
es usually 
auses mistra
king. The Condensationalgorithm, on the other hand, e�e
tively maintains multiple hypotheses over severalframes, letting the best one prove itself through 
ontinued reinfor
ement while theprobabilities of poorer hypotheses dwindle.Be
ause the sample set 
ompletely represents the tra
ker's parameters at any



138given time step, Condensation does not expli
itly maintain the state of the tra
kedobje
t as the Kalman �lter does. Rather, the set of samples must be queried. Thesuggested method is to de�ne the weighted mean of the samples at time t as the
urrent obje
t \state" in the Kalman �lter sense: Xt � PNi=1 �(i)t s(i)t . This workswell when the posterior density is roughly unimodal, but when there are multiplestrong peaks the samples 
an be divided fairly evenly between them, rendering this\state" a meaningless 
ompromise. The argument that Condensation is preferableto straightforward Kalman �ltering is predi
ated on the presen
e of multimodality,leaving the would-be tra
ker's ability to obtain a pre
ise state estimate in doubt.What is ne
essary, as the authors themselves point out in [59, 60℄, is a \mode �nder"that only averages within 
lusters of samples. They do not give a solution to theproblem, however.The measurement generation algorithm we presented in Chapter 4, whi
h 
om-bines random sampling, gradient as
ent, and enfor
ement of minimum separation,is a kind of mode �nder or 
lusterer (this is dis
ussed in more detail below). Bysolving the mode-�nding problem at the front end of the �lter 
y
le, we 
an use aKalman �lter to a
hieve a similar level of tra
king robustness. That the Condensa-tion algorithm glosses over this important step is somewhat surprising: "tra
king" adistribution is not very useful by itself.As might be expe
ted from the Kalman �ltering framework that we use, ourapproa
h to sample generation also di�ers from the Condensation version. We sampleonly in the neighborhood of the target's 
urrent predi
ted measurement, rather thangenerating samples dire
tly from previous good samples as Condensation does in thesele
tion step. This prevents the \
loud" of measurements asso
iated with a targetfrom separating into multiple groups, thus enfor
ing the notion that a single targetis being tra
ked. Condensation's observation step is its me
hanism for preventing



139runaway dispersion of samples.In sum, Condensation is an e�e
tive approa
h, but it does not dis
redit theKalman paradigm. The standard PDAF, by 
onsidering multiple measurements inea
h frame, is 
onsiderably more robust than an NN �lter in many situations; this hasbeen demonstrated in [5℄ and borne out in our own experiments. Furthermore, theimprovements we have made to the PDAF|espe
ially the 
ombination of di�erentmodalities for additional distin
tiveness|result in a level of tra
king performan
ethat mat
hes that of Condensation for many diÆ
ult sequen
es.7.2 Joint Tra
kingThe history of e�orts to tra
k multiple obje
ts simultaneously has been relativelybrief, as multiple obje
ts require proportionally more 
omputational e�ort and thediÆ
ulties of tra
king single obje
ts have been 
onsiderable enough to keep re-sear
hers well-o

upied. However, as pro
essing power has in
reased and problemsin single-obje
t tra
king have be
ome more thoroughly mapped, issues stemmingfrom the intera
tions between multiple obje
ts are beginning to attra
t attention. Inthis se
tion we explore the foundations of the methods we use for JPDAF and JLFtra
king as well as related e�orts with similar obje
tives.7.2.1 JPDAFThe Joint Probabilisti
 Data Asso
iation Filter (JPDAF) was originally introdu
edin [4℄ to deal with problems arising in the domain of tra
king radar- and sonar-based targets. Sin
e then, the algorithm has been 
orre
ted and extended; we usethe version summarized in [5, 28℄ for our dis
ussion and results. As we noted inChapter 5, the JPDAF is typi
ally applied to non-visual sensors with point-like



140returns that obviate the measurement generation problem. There has been some workon adapting the PDAF to measurements with areas, su
h as bright regions in low-resolution infrared sequen
es, by 
omputing 
onne
ted 
omponents after thresholdingin [78℄. An extension of the JPDAF to handle the problem of overlapping andhen
e merged measurements in infrared images is given in [108℄. However, this workassumes that the intensity of the overlapping area is additive be
ause the underlyingtargets are exhaust plumes; we 
annot make this assumption be
ause we are tra
kingopaque obje
ts. Other appli
ations of the JPDAF in
lude tra
king a �xed numberof visual features for stru
ture-from-motion [24℄ and autonomous navigation from aset of landmarks parametrized by range and bearing [37℄.When the validation gates of a set of targets do not overlap, the JPDAF redu
esto several PDAFs. Sin
e many standard tra
king methods use gradient as
ent orsome other iterative te
hnique that assumes small motions, their e�e
tive validationgates are relatively small and overlaps o

ur infrequently. Negle
ting the generalsuperiority of PDA �lters to NN �lters in the presen
e of greater noise [5℄, thismakes the behavior of standard NN Kalman �lters (su
h as [117℄ or Kalman �lteringon the output of an SSD mat
her [51℄) and the JPDAF similar in many visualsituations. However, overlaps tend to happen more frequently when validation gatesare expanded to handle higher tra
king speeds, the number of obje
ts being tra
kedin
reases, or 
onstraints on the targets (su
h as with parts of nonrigid or arti
ulatedobje
ts) en
ourage their proximity to one another. If these situations o

ur frequentlyenough or last long enough, the performan
e of the NN approximation to the JPDAFbreaks down. By negle
ting joint 
al
ulation of asso
iation probabilities, two targets
an \
laim" the same image feature and their states may 
onverge inappropriately.Two other data asso
iation �lters that elaborate on the PDAF and JPDAF arethe intera
ting multiple model �lter (IMM) [6℄ and multiple hypothesis tra
king



141(MHT) [99℄, respe
tively. IMM maintains multiple dynami
al models for a singletra
ked obje
t and attempts to employ the one that best des
ribes its behaviorat all times. MHT is similar to the JPDAF but provides a rigorous approa
h tode
iding when there is a new, tra
kable obje
t and when to halt tra
king of obje
tsthat have left the image or been o

luded for a long time. The basi
 idea behind theinitialization pro
edure is that measurements not asso
iated with any 
urrent targets(i.e., 
andidates for unknown targets) are 
orrelated with ea
h other from frame toframe to see if any are 
ontinually found in the same vi
inity. This strategy 
an bee�e
tive, but the 
omputational requirements of the MHT grow exponentially overtime. An eÆ
ient approximation of MHT is applied to the management of a largeset of appearing and disappearing features for motion estimation in [29℄.7.2.2 Joint Likelihood FilterWhen targets' extents a
tually overlap or they are in 
lose proximity, the JPDAF's
ombinatorial method of assortment be
omes insuÆ
ient to avoid state 
onvergen
e.We introdu
ed the Joint Likelihood Filter, a joint tra
king algorithm that addressesmany of the JPDAF's short
omings, in Chapter 5. A few other resear
hers haveinvestigated similar approa
hes to tra
king multiple intera
ting obje
ts.Rosales and S
laro�, for example, tra
k multiple 
rossing humans in [103℄. Theyassume a �xed 
amera for ba
kground modeling, allowing individual foreground ob-je
ts to be segmented as 
onne
ted blobs. O

lusions are predi
ted and the systemgoes into a di�erent mode during them, using pre-o

lusion velo
ity estimates to
orre
tly label blobs after separation. If the targets reverse dire
tion while they areoverlapping, the system 
an mistra
k.Stau�er and Grimson perform tra
king of people, 
ars, and other moving obje
tsfrom 
ameras mounted high above 
ampus plazas and street interse
tions as part



142of a surveillan
e and a
tivity 
ategorization proje
t [113℄. They also use a per-pixelba
kground model to identify large, 
onne
ted foreground regions as putative obje
ts.An ad-ho
, JPDAF-like method asso
iates foreground obje
ts with a pool of Kalman�lters that are 
urrently tra
king them; further heuristi
s are used to de
ide whento spawn or kill a tra
ker in the manner of MHT (though neither JPDAF nor MHTis 
ited). A

ording to the authors, the tra
ker has the most trouble in situationswhere obje
ts overlap one another. One reason for this may be the low-resolution ofmost targets, as the 
amera has a fairly wide-angle lens and is mounted hundreds offeet away.Beymer and Konolige tra
k multiple people with stereo and SSD in [10℄. Theyexpe
t a person to be standing and viewed frontally or from behind, so a s
alable,narrow re
tangle is used to represent their size and lo
ation. To tra
k, a foregrounddisparity map is �rst 
reated by subtra
ting the ba
kground (a �xed 
amera is as-sumed). For the tra
ked person 
losest to the 
amera, the foreground disparitymap is thresholded to isolate the layer around their predi
ted depth. An intensitytemplate is 
orrelated with the image and adjusted by mat
hing a binary persontemplate to the disparity map layer. A Kalman �lter updates the tra
ker's stateand the area of the foreground disparity map 
orresponding to the person's binarytemplate is removed. The pro
ess is repeated for the next farthest-away person, andso on. When the number of pixels are left in the disparity map layer that overlapthe binary template get too low, a person is 
onsidered 
ompletely o

luded and itstra
ker is removed. New people are sear
hed for by 
orrelating s
aled binary tem-plates with the depth layers extra
ted from the de
imated foreground disparity map.One problem with the tra
king system is that it tends to delete and 
reate persontra
kers instead of maintaining 
ontinuity when there are temporary full o

lusions.A somewhat more sophisti
ated approa
h is introdu
ed in [76℄. Their system



143tra
ks passing 
ars from a 
amera mounted on a highway overpass by �tting 
ontoursto 
ontiguous regions of motion. O

asionally, one 
ar follows another 
losely enoughor 
hanges lanes in su
h a way that a partial o

lusion o

urs. Without spe
ial logi
to deal with this eventuality, the 
ontour �tter be
omes 
onfused. The relativegeometry of the �xed 
amera and the road, however, allows the system to dedu
ethat the 
ar whose bottom edge is lowest in the image is 
loser to the 
amera. Theo

luded part of the more distant 
ar is \masked" out of the 
ontour-�tting operation,yielding better tra
king a

ura
y during the period of overlap.Another system whi
h is des
ribed in [98℄ tra
ks the �ngers of a human handwith SSD templates as they bend and blo
k one another. By mat
hing a detailed 3-Dmodel to the image, the depth ordering of the palm, thumb, and digits is derived ando

lusions between them are predi
ted. Those portions of the templates predi
ted tobe invisible are \windowed" out of the SSD 
al
ulations, a method similar to whatwe do in the 
omputation of the 
omponent image likelihood for textured regions inEquation 5.5.The essential idea of the three pre
eding approa
hes is to mask out the o

ludedpart of an obje
t in order to prevent the state estimator assigned to it from 
laimingimage information generated by the o

luding obje
t. In ea
h 
ase, predi
tions aremade about whi
h targets are o

luded and whi
h should be visible. This type ofinformation sharing about visibility between tra
kers is 
hara
teristi
 of the JointLikelihood Filter. However, all of the other te
hniques that do this use a three-dimensional state 
on�guration to inform the visibility analysis, whereas the JLFinfers a depth ordering stri
tly from the image information. This gives the JLFtra
ker the 
exibility to handle more visual situations and target types be
ause
amera movement is not restri
ted and separate obje
ts that do not 
onstrain oneanother (as opposed to 
onne
ted �nger joints) 
an be tra
ked.



144Most similar to the Joint Likelihood Filter is the work of Ma
Cormi
k and Blakein [81℄. Their system tra
ks multiple wireframe and opaque 
ontours using a vari-ant of Condensation. They append the obje
t depths to the joint state and imposetransition rules that make 
hanges in the visibility ordering improbable while the ob-je
ts overlap. This is more eÆ
ient than 
onsidering all permutations of overlappingtargets as we do, but it may slow the transition from erroneous initial orderings to
orre
t ones.Among these joint tra
kers, only [10℄ uses multiple modalities (stereo and SSD)to help dis
riminate between obje
ts. We examine other resear
h on tra
king obje
tswith more than one attribute in a later se
tion.7.2.3 Measurement generationThe measurement generation steps of both the single-obje
t and joint tra
king 
y
les,as detailed in Chapters 4 and 5, bear a resemblan
e to 
lustering methods des
ribedelsewhere. Re
all that for the ith of T independently-tra
ked targets, the PDAFpro
edure is to sample Ni lo
ations in the measurement spa
e Zi of ea
h target, hill-
limb some fra
tion of them with the 
onjugate gradient algorithm, and eliminateless-�t samples within a small neighborhood of more-�t ones. This winnowing pro
essleaves ni measurements; ea
h represents one peak in the image likelihood pi(I jX).The measurements 
an be regarded as exemplars of 
lusters of samples in the samebasins of attra
tion of pi(I j X) (the rest of whi
h were removed in the minimumseparation phase).For T identi
al, jointly-tra
ked targets, the JPDAF pro
edure is the same ex
eptthat there is only one 
ommon group of N samples narrowed to one pool of n mea-surements based on a single image likelihood p(I jX). The Joint Likelihood Filter isin some sense a higher-dimensional version of PDAF: it samples N lo
ations in joint



145state spa
e X J and 
lusters them into n joint measurements by hill-
limbing. (Wetreat the use of only the best joint event or joint measurement for JPDAF and JLF,respe
tively, as a step that 
omes after measurement generation rather than beingintegral to it).At this point an obvious question is: Why use our method instead of running astandard grouping algorithm on the samples before doing gradient as
ent? For exam-ple, one 
ommon 
lustering method for a known number of 
lusters is the K-meansalgorithm [53, 82℄. Given n data points D = fp1; : : : ;png, the algorithm is initializedby 
hoosing k initial 
luster 
entroids C = f
1; : : : ; 
kg, often as random members ofD. An iteration of the algorithm 
onsists of two parts: �rst, the ith data point isassigned to the nearest 
luster j su
h that the Eu
lidean distan
e between the pointand the 
luster 
entroid k pi; 
j k is minimal. Se
ond, the lo
ation of ea
h 
luster
entroid is updated as the mean of all data points belonging to that 
luster. Thesetwo steps are repeated until no data points swit
h memberships between 
lusters.The K-means algorithm is not optimal and sensitive to the initial 
luster 
entroidlo
ations. Therefore, a 
riterion for the \goodness-of-�t" of a 
lustering that favorslow within-
luster varian
e and high between-
luster varian
e is often used to sele
tthe best 
lassi�
ation after several repetitions of the algorithm with di�erent randomseeds. Examples of the K-means algorithm's use in vision in
lude [30, 113℄.We do not use K-means in the measurement generation pro
ess for a numberof reasons. First, our gradient as
ent step is still ne
essary as its primary purposeis to improve the samples and provide 
onsisten
y in their lo
ations to balan
e therandomness of their initial lo
ations. Without it, state estimates would have an ele-ment of noise related to the sampling 
ovarian
e �X and the number of samples N .Granting the utility of gradient as
ent, we do not need a general 
lustering algorithmbe
ause of the assumption that hill-
limbing brings the members of ea
h 
luster suf-
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iently 
lose together. This is what makes the enfor
ement of minimum separationa valid grouping te
hnique. Furthermore, K-means assumes a known number of
lusters, but under our assumptions we only know that the expe
ted number of 
lus-ters/measurements is T|some variation from image to image must be permitted.Finally, K-means forms 
lusters ex
lusively on the basis of proximity in the dataspa
e, whi
h is measurement spa
e or joint measurement spa
e. The 
lusters shouldbe based on the underlying stru
ture of the image likelihood fun
tion, though, inthe sense that samples in the same basin of attra
tion are grouped together. Thereis generally a 
orrelation between samples that are 
lose in measurement spa
e andsamples in the same basin of attra
tion, but these basins are not ne
essarily spheri
alas K-means would have them be.Another 
lustering algorithm often used in vision is Expe
tation-Maximization(EM) [36, 84℄. EM is a general algorithm for 
omputing ML and MAP estimateswith in
omplete data. A spe
ial 
ase of estimation with in
omplete data is mixturemodels, or estimation with data that is generated by multiple pro
esses. Assumingthat there are k models and n pie
es of data, EM simultaneously solves a 
lassi�
ationproblem and a parameter estimation problem. It does this by alternating betweenassigning ea
h pie
e of data to the pro
esses that best explain it (the expe
tationstep) and 
hanging the parameters of the models to re
e
t the data membership (themaximization step). Membership may be soft, so that a pie
e of data 
an belongto multiple models and exert weight on their parameters proportional to the degreeof its membership, or it may be hard, meaning that a data point 
an only belongto one model at a time. K-means 
an be regarded as an approximation to the EMapproa
h to mixture models in whi
h the models are the means and 
ovarian
es ofspheri
al ellipsoids and label assignment is hard.Bregler uses EM to label pixels as belonging to one of k 
oherent motion-
olor



147blobs in [20℄; the output of EM be
omes a measurement in a Kalman tra
king �l-ter. EM is also used to learn a dynami
al model for hand tra
king in [90℄ and formotion estimation in [2, 64, 121℄. An extension is made to EM in [121℄ to try toestimate the number of models; the minimum des
ription length (MDL) prin
iplefrom information theory is used in [2℄ to sele
t an appropriate number of models.EM 
ould probably be adapted for use in the measurement generation generationpro
ess, but the �t is not perfe
t. Typi
ally, the data points that are 
lustered inother vision appli
ations are image pixels rather than the measurements that we workwith. Without 
ompletely reworking the tra
king framework, a more appropriate useof EM might be to run separate instan
es of it to obtain a few measurements or jointmeasurements and use these as inputs to PDAF or the JLF. As far as we know,EM has not been applied to snake tra
king; doing so would likely require a di�erentformulation than the region-based appli
ations des
ribed above. One advantageof the approa
h that we have taken to measurement generation is its generality:on
e a image likelihood and minimum separation distan
es � for novel parametershave been de�ned for a new modality, our 
lustering method works without furthermodi�
ation. Lastly, as with K-means, EM 
annot estimate the number of 
lustersby itself.7.3 ConstraintsConstraints have been used in tra
king in many forms and by many resear
hers toimprove performan
e. The notion of eliminating unne
essary degrees of freedomand taking advantage of relationships between nearby pixels, edges, and higher-levelvisual units is so basi
 that SSD and snake methods, for example, are often viewedas fundamental tra
kers rather than 
onstrained systems of individual pixels and



148short edge segments, respe
tively. Nonetheless, 
onstraint methods have 
ontinuedto develop for targets beyond simple, rigid obje
ts, and a major motivation for thispush seems to have been the 
omplexity of the human body. In this se
tion wereview previous work on in
orporating 
onstraints into motion-based, edge-based,and other kinds of tra
kers of 
ompli
ated, arti
ulated obje
ts su
h as people andtheir fa
es, hands, and other body parts. Another, more re
ent, bran
h of resear
hon 
onstraints has fo
used on exploiting multiple target attributes simultaneously foradditional robustness. We also survey these e�orts. Finally, we brie
y dis
uss earlierwork of ours on extending the JPDAF to implement 
onstraints probabilisti
ally.7.3.1 Multi-part tra
kingMu
h of the previous work on tra
king 
omplex obje
ts has not expli
itly ta
kledthe data asso
iation issue. One line of primarily motion-based tra
king work, whi
his dis
ussed in more detail below, has avoided the asso
iation or 
orresponden
eproblem entirely through a di�erential approa
h. Many of these e�orts have moreof a 
avor of pure estimation, rather than the simultaneous problem of estimationand label assignment with whi
h this dissertation has been 
on
erned. Here thedata asso
iation problem is subsumed into the well-known 
orresponden
e problemin opti
al 
ow [54℄. For example, Yamamoto and Koshikawa [124℄ tra
k in-planearti
ulated movements of a human arm by relating arm motion to image 
hange viathe Ja
obian and solving the brightness equation using least-squares. Basu et al.[7℄ use a similar te
hnique to re
over 3-D head motion parameters by regularizingopti
al 
ow.Another line of tra
king resear
h has dealt with data asso
iation, but somewhatimpli
itly by using some form of nearest-neighbor asso
iation. Examples in
ludeKalman snakes [117℄, [18℄, the edge-based arm tra
king of Gon
alves et al. [48℄,



149and many feature tra
kers used as input to motion estimation or stru
ture frommotion algorithms (examples are given in [29℄). Typi
ally, su
h tra
king systemsmust manage a number of small image pro
essing windows or validation gates (e.g.,snake segments) within whi
h multiple 
andidate features (e.g., edge fragments) maybe dete
ted. Corresponden
es are established by sele
ting the nearest neighbor toea
h predi
ted measurement. By sta
king many measurements into a large ve
torand keeping the state relatively small, the measurement equation of the Kalman�lter be
omes over
onstrained. The redundan
y of multiple measurements tends tooutweigh the in
uen
e on the overall obje
t state of any individual part-measurementmisasso
iations due to the NN method.The many resear
hers who have investigated human body tra
king, either inwhole or in part, have en
ountered a few 
ommon design 
hoi
es stemming from
onstraints. One major de
ision is whether to model the target kinemati
ally ordynami
ally [123, 102℄. A kinemati
 model simply spe
i�es the 
onne
tivity betweenand range of motion of an obje
t's parts, while a dynami
 model also 
onsiders thein
uen
e of external for
es su
h as gravity and the ground as well as internal for
esoperating at joints and points of 
onne
tion. As mentioned previously, our fo
uson data asso
iation has led us to deemphasize dynami
s, whi
h a number of otherresear
hers have also negle
ted [65, 98, 102℄. Moreover, we have found a simplekinemati
 
onstraint model suÆ
ient for a broad range of tra
king tasks. EÆ
ientmathemati
al representations for kinemati
 
hain 
onstraints, whi
h are essentiallywhat we use in Chapter 6, are given in [22, 65℄.Regarding the a
tual enfor
ement of 
onstraints, vision resear
hers have typi-
ally 
hosen from two methods: �rst, allowing separate parts to have full, possibly
on
i
ting states and using Lagrange multipliers or a similar te
hnique to re
on
ilebetween them [68, 123℄; and se
ond, giving the parts the minimal degrees of freedom



150and deriving their parameters re
ursively along a 
hain [22, 65℄.Finally, arti
ulated-obje
t tra
kers 
an be roughly divided into those that at-tempt to use or re
over full 3-D information, those that are only interested in 2-Dinformation (and therefore might assume no o

lusions or out-of-plane motions),and those that 
ompute what we 
all \2.5-D" information. A 2.5-D representationis something like a 3-D representation, but without exa
t depth estimates. Instead,the s
ene is approximated as a set of 2-D layers for whi
h the depth order is known.This has been our approa
h in Chapters 5 and 6.One example of a 3-D tra
ker is the work of Bregler and Malik on tra
kingarti
ulated human motions using a kinemati
 
hain for a linear representation ofjoint 
onstraints between 
oherent motion-
olor blobs [21, 22℄. A 
onstrained formof the brightness equation is solved using Newton-Raphson minimization. To aid insegmentation, a ba
kground model is used. Results show that the torso, arms, legs,feet, and head 
an be tra
ked during walking from frontal, side, and three-quartersviews under normal imaging 
onditions. Be
ause the method is di�erential, it 
anhave diÆ
ulties with qui
k movements.Pentland and Horowitz demonstrate full-body tra
king in [92℄ using a methodsimilar to [124℄. Opti
al 
ow 
al
ulation is 
onstrained by a 3-D model 
onsistingof rigid 
ylinder-like shapes joined by springs. The Kalman-�ltered state estimateis the result of 
umulative opti
al 
ow and thus is subje
t to a build-up of error,limiting the length of a

urate tra
king.Joji
 et al. tra
k the torso, arms, and hands of a person with a 3-D kinemati

hain using a dense stereo disparity map in [65℄. In addition to the body part tra
kers,the system maintains a ba
kground depth model. The tra
ker 
an handle prolongedself-o

lusion. Wren and Pentland [123℄ tra
k a person's fa
e and hands with 
olorblobs (similarly to [122℄) using a virtual work formulation to enfor
e 
onstraints



151on an arti
ulated upper-body model. Temporary o

lusions are handled, and the
onstraints prevent mistra
king when another person's hand is interposed.Gavrila and Davis [45℄ do whole-body tra
king using four 
alibrated 
amerasmounted on a geodesi
 dome surrounding the subje
t. A 3-D, 22 degree of freedom(DOF) model of a person 
onsisting of linked superquadri
s 
orresponding to thehead, torso, arms, and legs is used to predi
t the lo
ation of edges in the four images;pose spa
e is sear
hed for the best overall mat
h. Subje
ts must wear skintight,
ontrasting 
lothing to assist edge dete
tion, and edges with no history of motion are
onsidered part of the ba
kground and removed before mat
hing. Up to two people
an move and intera
t fairly freely inside the dome without diÆ
ulty. Pro
essing isdone o�ine; no data on pro
essing speed is given.Rehg and Kanade present the DigitEyes system for 3-D hand and �nger tra
kingin [98℄. A 28 DOF kinemati
 
hain model represents the palm and all �ve digits.A visibility ordering of the digits is generated from the state in order to predi
to

lusions, guiding SSD mat
hing. Tra
king is based on gradient des
ent on the errorfun
tion. A distin
tion between this approa
h and the Joint Likelihood Filter, as wenoted in the previous se
tion, is that DigitEyes infers o

lusion from the state ratherthan the image. This works well for predi
ting self-o

lusions when tra
king a single,arti
ulated obje
t, but it is not appli
able to the o

lusions that may o

ur whentra
king multiple obje
ts that are not 
onne
ted to one another, su
h as two people.O

lusions in these kinds of situations 
an, however, sometimes be derived fromstereo or 
amera 
alibration information as [10℄ and [76℄, respe
tively, demonstrate.It is likely that a 
ombination of state-based o

lusion predi
tion and image-basedo

lusion dedu
tion would yield still better results.Morris and Rehg [88℄ do whole-body tra
king with a 2-D s
aled prismati
 model(SPD) that largely eliminates the singularity problems of 3-D kinemati
 models. The



152authors assert that the arti
ulated tra
king problem 
an be divided into two steps:a registration phase in whi
h the model is �tted to the image, and a re
onstru
tionphase in whi
h 3-D parameters are re
overed. They argue that the latter phase isnot always ne
essary, su
h as for gesture re
ognition, and 
an always use the outputof the �rst phase in bat
h form. In the SPD, joint angles are all in the image planeand links 
hange length for out-of-plane rotations. There is no o

lusion handling.A 
ardboard person model for tra
king 2-D arti
ulated human motions with 
on-ne
ted quadrilateral pat
hes is presented in [66℄. The brightness equation for opti
al
ow is augmented to in
orporate the arti
ulation 
onstraints and solved dire
tly us-ing a robust estimation te
hnique. A three-level 
oarse-to-�ne pyramid is used to
ope with relatively large motions. Examples given are of tra
king the thigh and 
alfof the foreground leg during walking motions parallel, orthogonal, and at 45 degreesto the image plane. Large motions from frame to frame 
an 
ause the gradient as
entmethod to mistra
k, and o

lusions are not handled.P�nder [122℄ maintains a ba
kground model and 
lassi�es foreground pixels asbelonging to one of seven body part blobs (fa
e, hands, feet, shirt, and pants) basedon a 
ombination of 
olor similarity and spatial proximity to the blob 
enter. A mor-phologi
al growing operation is used to ensure 
onne
tivity within blobs. O

lusionsare handled as all-or-nothing blob \disappearan
es," and the system 
an bootstrapitself onto a person entering the image. Multiple people in the s
ene 
an 
onfusetra
king.Kakadiaris et al. des
ribe an algorithm for tra
king in-plane, arti
ulated arm and�nger motions as it dedu
es the number of rigid parts in [68℄. The edges of the arm or�nger are found against a 
ontrasting ba
kground, and initially a single deformable,physi
s-based model is �tted to them. When the model bends far enough, the �ttingerror and dis
ontinuity in the edge 
urvature derivatives trigger a de
ision to split the



153model into two parts 
onne
ted by a joint. Fuzzy 
lustering is used to share pointsin the border zone between parts. A Kalman �ltering framework helps mitigate thee�e
t of spurious edges introdu
ed by partial o

lusions.Rohr models a person as a set of 
onne
ted 
ylinders with ellipti
 
ross se
tions in[102℄. Medi
al data was used to obtain a one-variable phase angle parametrizationof the internal 
on�guration (joint angles and limb positions) of the model for awalking motion parallel to the image; the horizontal image position of the body
entroid is estimated separately. Assuming a �xed, 
alibrated 
amera, a Kalman�lter predi
ts the lo
ation of straight edges in the image and 
omputes the degreeof mat
h. Analogous to our argument against a too-spe
i�
 dynami
al model, thekinemati
 model here is overspe
ialized. This tra
ker 
annot handle anything butone person walking in pro�le at a 
onstant velo
ity.Reynard et al. investigate 
oupling frontal mouth and head snake tra
kers in [100℄as a method for preventing mistra
king of the mouth during lateral head movements.Without the 
oupling, the mouth tra
ker depends primarily on verti
al edges at thetop and bottom of the lips and therefore su�ers from the aperture problem duringhorizontal motions. When linked with the mouth in a 
ombined Kalman tra
ker,however, the strong horizontal edges on the sides of the head silhouette 
ompensatefor this vulnerability and allow a full range of motion.7.3.2 Multi-attribute tra
kingInvestigations into exploiting multiple di�erent modalities for tra
king have be
omemore 
ommon in the past few years. This 
an be as
ribed in part to the additional
omputational overhead entailed by 
ombining methods, and partially to the ten-den
y of some resear
hers to 
ontinue re�ning the single-modality te
hniques withwhi
h they are most familiar. Even those systems that do rely on di�erent modalities



154rarely use them at the same time. Most often, a set of heuristi
s arbitrates betweenwhi
h modality to employ or favor at any given time.Darrell et al. 
ombine stereo, 
olor, and a fa
e dete
tion module to tra
k frontalviews of multiple people's fa
es and upper torsos in [31℄. No Kalman �lter is used;the state of ea
h person is updated using a nearest neighbor approa
h after iden-tifying 
andidate person lo
ations. Candidate lo
ations are found by running ea
hof the three modules separately to �nd good range pro�les, skin 
olor, and fa
emat
hes, respe
tively. These separate 
andidates are ranked, with preferen
e givenin de
reasing order to fa
e mat
hes, overlapping range and 
olor 
andidates, range
andidates, and 
olor 
andidates. This is in 
ontrast to the Constrained Joint Likeli-hood Filter outlined in the previous 
hapter, whi
h always looks for 
onjun
tions ofthe attributes it is using and does not favor one over another. The system does notre
ognize the o

urren
e of o

lusions per se, but rather waits for people to separatebefore using the fa
e dete
tor to re
lassify them.Bir
h�eld uses 
olor and intensity gradients for head tra
king [11℄. The 
olor andedge mat
h 
riteria are des
ribed above; to 
ompare these two sour
es of informationat a 
ommon s
ale, the two independent mat
h formulae are 
onverted into per
ent-ages by dividing by their range of possible values. The e�e
t of this step is similar tothe fun
tion of �tregion; �hregion, and �snake in the 
omponent image likelihoods givenby Equations 5.4, 5.6, and 5.8, respe
tively.Other examples of multi-attribute tra
king in
lude Bregler's in
lusion of both
olor and motion parameters in a multivariable Gaussian representing a blob [20℄.This impli
itly handles the di�eren
es in s
ale between the two quantities. Mae etal. use opti
al 
ow plus 
ontours found by edge dete
tion to improve tra
king inambiguous visual situations [83℄, and P�nder [122℄ 
ombines the output of the 
olorblob segmenter with a 
ontour analysis step in a heuristi
 way.



155Perseus, a vision system mounted on a mobile robot, 
omputes multiple featuremaps (
olor, motion, and disparity) to �gure out where a person is pointing [67℄.When the robot is not moving, ba
kground subtra
tion is used to �nding the person;when it is moving, stereo disparity is used (after eliminating pixels with of known
oor 
olor or bright enough to be 
eiling lights). A geometri
 analysis is then used todetermine where the arm is; arm-�nding fails if the hand is not away from the body.The di�erent 
ues are not used simultaneously, but rather in sequen
e depending on
ertain 
onditions.The In
remental Fo
us of Attention (IFA) algorithm [118, 119℄ is a system of de-
ision 
riteria for swit
hing between 
oarse-to-�ne tra
king methods (motion, 
olor,SSD) in order to maximize a

ura
y and re
over qui
kly and robustly from mistra
k-ing. Again, the di�erent methods are used sequentially rather than simultaneously.7.3.3 Constrained Joint Probabilisti
 Data Asso
iation Fil-terIn previous resear
h [96, 97℄, we augmented the JPDAF to in
lude a method ofenfor
ing 
onstraints probabilisti
ally, whi
h we 
alled the Constrained Joint Prob-abilisti
 Data Asso
iation Filter (CJPDAF). The CJPDAF works by quantifyinghow well the relationships between measurements �t the desired 
onstraints betweentheir asso
iated targets. Introdu
ing 
onstraints into the state update pro
ess at thispoint a�e
ts the 
omputation of the asso
iation probabilities, whi
h are determinedin Equation 5.1. By en
oding a probabilisti
 preferen
e for 
ertain part arrange-ments, the e�e
t is to favor those interpretations of the data that best �t the modelrather than for
e the target state into �tting it (whi
h is what the Constrained JointLikelihood Filter (CJLF) does). The only examples of 
onstraints used in [96, 97℄ are



156rigid links with no rotation or s
aling, but a fun
tional de�nition of the inter-part
onstraints in [97℄ allows for more 
ompli
ated relationships. The CJPDAF is often auseful, 
exible way to introdu
e 
onstraints into a multi-part tra
king system, but bynot imposing them until after the measurement generation step, there is a possibilitythat the independently-generated measurements 
annot be arranged in a joint eventthat 
losely satis�es the 
onstraints. By jointly generating measurements that meetthe 
onstraints from the very beginning of the pro
ess, however, the CJLF proves tobe mu
h more robust.



Chapter 8
Con
lusion
This dissertation's primary 
ontribution is its demonstration of the importan
e of rea-soning about 
orresponden
es between tra
kers and image data in order to a
hieverobust vision-based tra
king. In arguing that standard estimation te
hniques areoften inadequate for real-world tra
king tasks, we have 
atalogued a number of dis-ruptive visual phenomena su
h as agile motions, o

lusions, and distra
tions thatmake tra
king diÆ
ult and presented a series of new methods to 
ountera
t them.One innovation of this work is the analogy we have drawn between visual o

lu-sions and distra
tions and the problem of no or multiple measurements that algo-rithms su
h as the Probabilisti
 Data Asso
iation Filter (PDAF) and Joint Proba-bilisti
 Data Asso
iation Filter (JPDAF) [5℄ were intended to solve. Though these�lters were originally developed for dis
rete radar and sonar tra
king appli
ations,we were able to su

essfully adapt them to visual tasks by de�ning measurementssuitably and devising a prepro
essing step to extra
t them. Run head-to-head on thesame image sequen
es, the vision-based tra
king algorithms thus 
reated exhibitedmarkedly better performan
e in the presen
e of 
lutter and when tra
king multipleidenti
al obje
ts than many 
urrent 
ommonly-used methods.157



158Our te
hnique for generating the measurements used as input to these data as-so
iation �lters is also notable. We have found that a 
ombination of random sam-pling and gradient as
ent for extra
ting a dis
rete set of high-likelihood hypothesesabout 
hara
teristi
s of the target's image proje
tion 
onsistently yielded a

urateresults. The identi�
ation and 
onsideration of a group of alternative hypothesesin the neighborhood of the tra
king �lter's predi
tion allowed ambiguities to be re-solved over multiple frames and helped to qui
kly relo
ate the target when it movedwith agility. This pro
edure is also general enough that it 
an be applied to any newtra
king modality de�ned in the manner of the examples in Chapter 3.We have also expli
ated short
omings in the JPDAF and remedied them witha more eÆ
ient and sophisti
ated method, the Joint Likelihood Filter (JLF). Byrelating the ex
lusion prin
iple at the heart of the JPDAF to the method of maskingout image data [76, 98℄, the JLF handles o

lusions between tra
ked obje
ts. Ourextension of this method to 
olle
tions of obje
ts of di�erent modalities su
h as 
olor,shape, and appearan
e is original. The approa
h we take to 
olor representation andregion geometry for homogeneous regions is our own. Moreover, though others haveused three-dimensional state parameters to assist with o

lusion reasoning, the JLF'sinferen
e of the depth ordering of tra
ked obje
ts during overlaps from image dataalone is novel.Finally, we augmented the JLF method to allow low-level tra
kers to be 
omposedvia part and attribute 
onstraints in order to spe
ify more 
omplex targets. This algo-rithm, the Constrained Joint Likelihood Filter (CJLF), redu
es the vulnerability of avision-based tra
ker to unmodeled distra
tions and o

lusions by e�e
tively de�ningits target more distin
tively. Although geometri
 
onstraints are a well-establishedmethod for in
reasing robustness, exploiting multiple modalities simultaneously totra
k a single obje
t|espe
ially three, as we do|is fairly new, and the union of



159these two approa
hes is 
learly an advan
e. The way that the CJLF framework doesso is made more useful by its 
exibility and extensibility: target models 
an be easilyspe
i�ed and new modalities 
an be added straightforwardly.The main 
laim that we make about these new algorithms is that they o�er qual-itative improvements in tra
king performan
e over existing methods when the visualdisruptions we enumerated are present in an image sequen
e. That is, by modelingdistra
tions and o

lusions as we do, we add a novel 
apability that standard te
h-niques la
k and allow tra
king to pro
eed su

essfully where it otherwise it is proneto fail. Su
h a 
laim is distin
t from one of simple quantitative superiority, whi
h,for example, might assert that the expe
ted error between state estimates and theground truth is smaller for one algorithm than another. The latter 
laim followsfrom the �rst, in a sense, but here we have fo
used on the inability of standard al-gorithms to 
ope with 
ertain phenomena as an obsta
le to their more widespreadappli
ability.We took several approa
hes in this dissertation to demonstrating the eÆ
a
y ofour tra
king methods. First and foremost, we have argued through hypotheti
al ex-amples and derivations that, for example, not 
arrying out the measurement pro
essjointly and/or exploiting 
onstraints between tra
kers when they apply leads to anin
orre
t formulation of the posterior probability on the state given the images ob-served. Correspondingly, we have sought to show how the JPDAF and JLF addressthe �rst problem through the image likelihood and how the CJLF addresses the se
-ond through the prior on the state. These probabilisti
 arguments demonstrate whythe visual disruptions 
lassi�ed 
onstitute signi�
ant violations of the assumptionsof standard tra
king te
hniques.We also buttressed this theoreti
al approa
h with empiri
al eviden
e obtainedfrom tra
king experiments on real image sequen
es. By attempting to tra
k in vari-



160ous situations with standard te
hniques, we 
on�rmed the detrimental 
onsequen
esof visual disruptions. Noise, intera
tions between multiple tra
ked obje
ts, and in-suÆ
ient 
onstraints between linked parts frequently led to mistra
king as predi
ted.Conversely, when an appropriate new algorithm was employed, the in
iden
e of mis-tra
king was greatly redu
ed. The �gures that make up the bulk of the data dis
ussedin ea
h 
hapter's results se
tion were sele
ted as representative of many head-to-headruns. Repetitions were performed both to gauge the 
onsisten
y of the results for mi-nor parameter variations and to give a better statisti
al pi
ture when the algorithmshad a sto
hasti
 
omponent. In several 
ases, we have summarized the results of abat
h of runs by the fra
tion in whi
h the obje
t was su

essfully tra
ked. The widedisparities in performan
e quanti�ed in those examples are 
hara
teristi
 of what weobserved over the entire 
orpus of experiments, but regrettably we did not do thesame pre
ise tabulation for all of them.The way that we 
hose the image sequen
es in this dissertation points up ageneral diÆ
ulty with 
omparing tra
king methods. While we strived to in
ludesequen
es that had di�erent kinds of obje
ts, motions (both of the obje
t and the
amera), and ba
kgrounds in order to put a range of stresses on the various algorithmsand modalities, there is still a question of how representative the sequen
es are.Addressing this issue is more straightforward when the problem domain of the tra
keris known and limited, but we have tried to keep our framework general. What isreally 
alled for is in some sense a basis set of sequen
es. The theory behind whatwould go into su
h a set is still embryoni
, however, and the tra
king 
ommunityhas yet to even a
hieve 
onsensus on any 
ommon set of sequen
es suitable for
omparison. Moreover, when using real-world video 
lips it is hard to 
ontrol enoughof the visual variables to support a 
laim that the su

ess or failure of tra
king isdue to one parti
ular fa
tor. This diÆ
ulty is 
ompounded by the fa
t that where



161good sequen
es are available, it is often laborious if not impossible to extra
t groundtruth from them. Syntheti
 sequen
es along the lines of what we used in Figure 4.8would seem to remedy this problem, but whether photorealism is ne
essary and howappli
able results obtained on syntheti
 sequen
es are to real-world situations areissues that demand more study.In the following se
tion, we will dis
uss some other questions that have arisen inthe 
ourse of this resear
h whi
h we plan to investigate further.8.1 Future workThere are a few major dire
tions whi
h we see as promising for improving and ex-tending the work presented here.Additional modalities An obvious next step in our resear
h is to implement moretra
king modalities within the framework des
ribed for single obje
ts in Chapter 3and joint obje
ts in Chapter 5. Additional des
riptive attributes would further in-
rease the distin
tiveness of any tra
ked obje
t, boosting the reliability of tra
kingin more diÆ
ult visual situations. Moreover, when limited pro
essing power doesnot allow the use of all available modalities, 
areful sele
tion of the most useful onesat hand is ne
essary. A larger set of methods with 
omplementary strengths andweaknesses would a�ord better 
overage in situations where the obje
t's 
olor, ap-pearan
e, or shape alone are diÆ
ult to dis
ern due to lighting, resolution, or otherlimitations.A number of well-studied 
andidate modalities su
h as motion and stereo arereviewed in Se
tion 7.1.1. Some other novel tra
king 
ues also seem worthy of inves-tigation. For example, one interesting 
ue is texture in a statisti
al sense. Suppose



162that we would like to re
ognize and tra
k an obje
t 
overed with verti
al stripes,wavy lines, spots, or some other repetitive pattern. De�ning a texture pro
edurallyor parametri
ally as opposed to the stati
 referen
e image of a textured region wouldmake for a more 
on
ise, view-insensitive obje
t des
ription. Moreover, 
lasses ofobje
ts (e.g, zebras) instead of only single instan
es (e.g., this zebra) 
ould be 
har-a
terized, and single-instan
e tra
king would likely be more robust. Zhu et al. dotexture modeling by pi
king a basis set of �lters using information theory [126℄ andEfros and Leung [39℄ synthesize textures from a sample using a non-parametri
 te
h-nique. A 
orollary of su
h results whi
h might lead to a quite versatile and powerfultra
ker is a more 
omplex texture 
omparison fun
tion than simply subtra
ting theintensities of 
orresponding pixels. However, these texture modeling methods are
urrently too 
omputationally intensive to be feasible for tra
king.Modality 
omparison A natural question to ask about 
ues 
on
erns their ef-�
a
y. Thus far we (and many other resear
hers, it seems) have relied solely onintuition and empiri
al observation to guide the 
hoi
e of whi
h tra
king modalityworks best for a given image feature. Furthermore, our use of MPEGs for input hasgiven us the luxury of 
on
luding (as have others|e.g., [31℄) that more modalitiesare always more helpful. With a large group of 
ues available and a real-time taskthat pla
es hard limits on 
omputational resour
es, however, it be
omes paramountto have a rigorous te
hnique for sele
ting one best 
ue or a minimal subset of 
uesthat satisfy the task's requirements eÆ
iently. What is ne
essary is a de
ision 
rite-rion that a

ounts for the 
hara
teristi
s of the target being tra
ked and the image
onditions at any given time and makes a reasoned 
hoi
e about the superiority ofa textured region vs. a homogeneous region vs. a snake vs. any other modality.As a 
orollary, we would like to be able to predi
t when tra
king human fa
es, for



163example, how mu
h of a performan
e improvement would be gained by augmentinga homogeneous region with a textured region instead of, say, adding a snake. Su
hinquiries are essentially 
on
erned with quantifying distin
tiveness.One possible basis for a theory of 
omparing tra
king modalities is some sort ofmeasure for our 
on�den
e that the estimate returned by the tra
ker is a good one.Con�den
e in an estimate may stem from a number of fa
tors, but a very importantone is how mu
h better (in a probabilisti
 sense) it is than the alternatives. Howmu
h does the estimate stand out as the solution rather than a solution? If we viewthe visual 
ues as akin to 
hannels 
arrying messages of varying helpfulness about thevalue of the stateX, information theory provides a prin
ipled approa
h to quantifyingthese intuitive qualities. In parti
ular, Fisher information [27℄ is promising as abridge between information theory and estimation. The Fisher information J is alower bound on the varian
e of an unbiased estimator of a set of parameters of aprobability density. Here the parameters are 
ontained in X, the probability densityp(X j I) is 
onditioned on the 
urrent image I, and the estimator is one of the
andidate tra
king methods. As a yardsti
k for an estimate's repeatability, JA fora parti
ular modality A 
an be regarded as a maximum 
on�den
e measure in thatmodality's tra
ker for a given set of state parameters and image 
onditions. Thismakes it relevant for 
omparing the relative e�e
tiveness of various tra
king methods.There has been some previous work on the theory of visual 
ue integration usingFisher information and other information theoreti
 approa
hes. Yuille and B�ultho�[125℄ develop a theory about fusing bino
ular stereo and mono
ular depth 
ues formotion parallax, as well as shape from shading and texture. Blake et al. [15℄ use the
ompression and density of texture elements on a surfa
e as 
ues for estimating its tiltand slant in 
omputer-generated images, analyzing the usefulness of ea
h a

ordingto its Fisher information. However, there has been no resear
h to date on employing



164Fisher information to sele
t and integrate 
ues spe
i�
ally for tra
king, so this mightbe a fruitful avenue.Tra
ker initialization and termination Another area whi
h deserves more at-tention is the initiation and termination of tra
king. Currently, a user points and
li
ks with a mouse to set a tra
ker's initial state parameters|e.g., by 
hoosing lo-
ations along a snake's 
ontour or indi
ating a region's image position, angle, width,and height. The user then presses a button to start tra
king, whi
h 
ontinues untilthe end of the MPEG is rea
hed or the program is killed. There are several reasonswhy it would be bene�
ial to have tra
king begin and end without user intervention.The �rst is 
onvenien
e. The 
ommen
ement of tra
king 
an be easily automatedwith s
ript �les for MPEGs, but repeatedly pi
king the fa
e to be tra
ked in a liveimage sequen
e, for example, is tiresome. A higher-level pro
ess that looks every-where for fa
es and starts tra
king in lo
ations with good mat
hes would obviatethis 
hore. A se
ond reason is that tra
ked obje
ts sometimes leave the frame orare 
ompletely o

luded for long stret
hes of time. Re
ognizing su
h absen
es wouldprevent erroneous state estimates from being promulgated, and re�nding lost obje
tsto resume tra
king would allow a tra
ker to run for longer periods and re
over from
lutter for whi
h this dissertation's methods are insuÆ
ient. Su
h skills have beentermed post-failure robustness [118℄. Lastly, an ability to dis
over image featuresthat mat
h the target model but have not been pointed out by the user 
ould alsoidentify persistent distra
tors. As a result, distra
tors 
ould be treated as tra
kableobje
ts in their own right and dealt with using the JPDAF or Joint Likelihood in-stead of approximating them as noise or minimizing their o

urren
e with additionalmodalities.The high-level sear
h pro
ess posited for initiating a tra
ker assumes the exis-



165ten
e of a detailed model of the sought obje
t's 
olor, appearan
e, or shape in orderto test hypotheses. A major di�eren
e between su
h a sear
h and the tra
king mea-surement pro
ess detailed in Chapter 4 is the markedly greater breadth and hen
e
omputational load required for initialization. The prior on the state p(X) is 
onsid-erably more di�use be
ause there is no predi
tion from the previous frame to narrowthe fo
us. Close �ts to the obje
t model must be subje
ted to a thresholding stepto de
ide whether to a
tually start a new tra
ker. As for termination, a separatemodule would monitor the health of existing tra
kers in order to determine whenthey no longer have suÆ
ient image 
orroboration to 
ontinue.The Condensation algorithm [59℄ starts tra
king with a spread-out prior and 
on-tinually shifts resour
es away from less likely areas of state spa
e to more promisingones, so in a sense automati
 initialization and termination are built in. Neverthe-less, the same failure to make a dis
rete de
ision about how many targets are beingtra
ked whi
h we referred to in Se
tion 7.1.2 also means that there is no de�nitede
ision as to whether a new target has appeared or an old one is gone. In 
on-trast, multiple hypothesis �ltering [5, 28℄, whi
h we 
overed in Se
tion 7.2.1, is adata asso
iation te
hnique similar to the JPDAF that is very expli
it about theseevents. It automati
ally dete
ts new targets and eliminates obsolete targets with asophisti
ated methodology that takes several frames to make a de
ision. However,it is quite expensive 
omputationally and seems to have only been applied in visionto �xed-size, SSD-type features [29℄.The expense of the broad sear
h ne
essary for automati
 initialization is only
ompounded by the high-dimensional states resulting from the kinemati
 
onstraintsintrodu
ed in Chapter 6. The strategy of Gavrila and Davis in [45℄ is one interestingapproa
h to improving eÆ
ien
y. They sear
h pose spa
e hierar
hi
ally for bodyparts: �rst the torso, then the arms, then the legs. Their intuition is that the torso



166is easier to lo
ate be
ause it varies less in position and orientation, and 
an then\an
hor" the sear
h for atta
hed limbs. This is somewhat similar to the partitionedsampling te
hnique used by Ma
Cormi
k and Blake in [81℄ to redu
e the numberof samples needed for Condensation tra
king of obje
ts or groups of obje
ts withhigh-dimensional states. The basi
 idea of sear
hing for obje
t parts in des
endingorder of distin
tiveness would likely boost the performan
e of ordinary tra
king aswell.A problem 
losely related to automati
 initialization is how to �nd features worthmodeling and tra
king in the �rst pla
e. This version has arisen in stru
ture-from-motion problems [29℄ and surveillan
e tasks [103, 113℄. In this 
ase there is nospe
i�
 representation of the target per se (like a referen
e image of a fa
e or a skin
olor model), but rather only an idea of an ideal target's properties. The 
hief su
hproperty used by resear
hers is sometimes 
alled \tra
kability," a virtual synonymfor distin
tiveness. Shi and Tomasi establish strong verti
al and horizontal gradientsas a tra
kability 
riterion for SSD features in [109℄; motion-sensitive tra
kers usuallylook for a 
ompa
t, 
onne
ted group of strongly-
hanging pixels [103, 113℄. Fisherinformation is used in [115℄ to derive a goodness measure similar to that of [109℄ bysear
hing for �xed-size regions that maximize J. A pro
edure su
h as this might begeneralizable to other modalities.Model learning It would also be advantageous to ultimately in
orporate learninginto our tra
king framework. Learning a�ords an opportunity to a

urately tuneobje
t dynami
s and build more re�ned models of appearan
e, 
olor, kinemati
s,and so on. The trained snake tra
kers in [18, 100℄, for example, obviously rea
tbetter than their untrained 
ounterparts to agile motions. Improving a tra
ker's skills
ontinuously through an online version of their learning algorithm would be ideal.



167Another bene�t of learning is that rough models entered by hand 
an be augmentedor 
orre
ted over time, and long-term modi�
ations to the tra
ked obje
t su
h asbeard growth or 
hanges in 
lothing 
an be a

ommodated adaptively. The systemin [68℄ initially models a human arm as a single, 
exible obje
t until it observes alarge enough bend to dedu
e that there are a
tually two parts (the forearm and upperarm) joined at the elbow. An elaboration of this kind of approa
h might be able to�rst approximate a whole human body as a single re
tangle and gradually parse outthe stru
ture of the torso, limbs, and head, avoiding the expli
it spelling-out of thekinemati
 
hain that must 
urrently be done.Code optimization A �nal 
onsideration for future work is a te
hnologi
al one:the implementation of the tra
king algorithms des
ribed in this dissertation 
ouldlikely be sped up greatly with a 
on
erted e�ort to optimize 
ode. We have notbeen 
on
erned as mu
h with maximizing speed as with improving general tra
kingperforman
e, and this is re
e
ted in the running times of our algorithms, whi
hrange from near real-time (de�ned as tra
king 
al
ulations keeping pa
e with a 30frames-per-se
ond stream of 640 � 480 images) to se
onds per frame on a 650 MHzPentium III. Nonetheless, besides fa
ilitating more eÆ
ient testing and 
omparisonof methods, a reliably real-time implementation is a prerequisite to any real-worldappli
ation of the full spe
trum of our methods.Speed depends on a number of fa
tors, most importantly the number and type ofatomi
 tra
kers, iterations of gradient as
ent allowed, and number of state samplesexplored. Pro�ling the 
ode shows, unsurprisingly, that a major portion of its timeis spent doing image pro
essing in repeated evaluations of p(I jX) for di�erent statesamples. Using the SIMD 
apabilities o�ered by the MMX 
omponent of the PentiumIII 
hip, whi
h we do not, would 
ut down per-frame 
omputation time a great deal.



168For example, ben
hmarks for the Intel Image Pro
essing Library (IPL) [57℄ indi
ateas mu
h as a 500% improvement going from non-SIMD to SIMD versions of 
ommonimage operations su
h as 
onvolution, zoom, and addition.Another intriguing possibility is suggested by the work on a
tive blob tra
kingin [106℄. They use the spe
ialized 3-D hardware of an OpenGL graphi
s 
ard toqui
kly synthesize expe
ted images of a deformable tra
ked obje
t from its state.This ability would be a great help to us in performing, for example, the aÆne warpwith bilinear interpolation on the referen
e image IR that is part of the image likeli-hood for textured regions. The re
ent OpenGL 1.2 spe
i�
ation [110℄ in
ludes someimage pro
essing fun
tions akin to those in the Intel IPL, making it likely that 3-Dgraphi
s 
ards will soon provide even more hardware that 
an be exploited for tra
k-ing. Moreover, our use of MPEGs instead of live input in order to fa
ilitate exa
t
omparisons 
auses some performan
e degradation due to the extra load on the CPUof software MPEG de
oding. Most 
urrent graphi
s 
ards 
an do this de
oding inhardware.8.2 CodaA guiding motivation throughout this thesis has been that distra
tions, o

lusions,and sudden movements pose a major 
hallenge to the reliability of vision-based tra
k-ing for both people and ma
hines.How do people 
ope? The basi
 neurobiology of tra
king 
onsists of eye (andultimately head) motions aimed at keeping the image proje
tion of the obje
t ofinterest on the fovea, the high-a
uity 
enter of the retina that subtends about 1Æ ofthe visual �eld [71℄. Smooth pursuit movements of both eyes, whi
h follow targetsat moderate speeds, are pun
tuated by qui
k sa

adi
 movements. Sa

ades \
at
h



169up" when target motion is too fast or dis
ontinuous and also serve to shift attentionto interesting stimuli in the periphery of the visual �eld. Per
eptions of large obje
tssu
h as human fa
es that do not �t within the fovea seem to be 
onstru
ted fromrepeated sa

ades between smaller areas of interest [71℄.A 
omprehensive theory of how the visual system makes attentional 
hoi
es anda
ts upon them is, of 
ourse, still nas
ent. Nonetheless, these �ndings agree withthe intuition that as we tra
k a 
omplex obje
t su
h as another human being, a
onstant series of adjustments must be made to where we are looking and what weare looking for in order to 
ompensate for unpredi
table motions, disappearan
es, andambiguities. Consider the friend-in-a-
rowd s
enario alluded to in the �rst 
hapter.To follow our friend we 
an try to �xate on their fa
e, but the similarity of thesurrounding fa
es may prompt qui
k, 
ontinual s
ans of the vi
inity to insure thatthere have been no mix-ups. If this is too 
onfusing, we might attend to our friend'shair 
olor as long as it is distin
tive enough. When the friend's head is blo
ked, ourattention shifts to their still-visible shirt. If they are entirely obs
ured, we anti
ipatetheir reemergen
e at some predi
ted spot or simply sear
h that area of the imageuntil they are refound. The sum total of this pat
hwork of strategies is the humanability to maintain visual 
onta
t with a target despite many severe disruptions.Although we make no 
laims that our methods are in any way 
onsonant withthe me
hanisms of the human visual system, we have drawn inspiration from them.Responding to the problems detailed above, this dissertation has taken the view thatunless traditional estimation te
hniques are bolstered with expli
it reasoning aboutthese phenomena, tra
king performan
e in many real-world situations inevitably suf-fers. The philosophi
al tou
hstone of our work has been that robustness 
an be in-
reased by exploiting multiple sour
es of information simultaneously. This approa
his manifested in many innovative aspe
ts of our framework: e.g., individual tra
kers



170avoid 
ommitment to a single attra
tive feature to defend against noise, groups oftra
kers share information about 
orresponden
e 
hoi
es to avoid interfering withone another, and diverse geometri
 and qualitative 
ues are integrated to in
reasedistin
tiveness. The value of these methods is demonstrated by their superior tra
k-ing performan
e on many obje
ts in the presen
e of diÆ
ult 
lutter and partialo

lusions.
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