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Chapter 1
Introdution

If you dare not trust that you see, onfess not that you know:If you will follow me, I will show you enough . . .William ShakespeareMuh Ado About NothingAt 3, Sene 2To follow an objet with the eye|to trak it|is virtually a subonsious ativityfor a person most of the time. Only under very diÆult irumstanes is one aware ofit taking any e�ort at all: while wathing the ball arom around energetially duringa pinball game, perhaps, or trying to pik out a friend's fae as they make their waythrough a rowd. Without attempting to enumerate every reason that traking isharder in these situations, a few fators stand out. The speed of movement of theball, its frequently unpreditable hanges of diretion, the proximity of similar faesto the friend's fae, and the onstant disappearanes and reappearanes of their bodybehind others|all seem to onspire to interrupt what is normally a smooth trakingproess. 1



2The history of arti�ial intelligene amply shows, of ourse, that even skills whihome naturally to people are rarely straightforward to impart to omputers. Nonethe-less, there is a strong motivation to study visual traking and its attendant issues,if only beause of the many useful tasks that omputers and robots ould arryout with just a fration of the human visual system's apabilities. For instane,many researhers have been interested in pereption for autonomous vehiles, suhas driverless ars that follow lane lines and detet other ars as they negotiate high-ways [35, 116℄. Suess in this area would have obvious rami�ations for publitransportation and shipping. Other have studied mobile robots that visually avoidobstales and loate landmarks to navigate within buildings, allowing them to makedeliveries or give tours [25, 33, 55℄. Another fous of investigation has been on gath-ering information from passive, ground- and air-based ameras for surveillane andativity lassi�ation tasks suh as seurity, military reonnaissane, and studyingpedestrian and vehile traÆ patterns [79, 113℄. The human body has also been thesubjet of muh work on analyzing gestures, faial expressions, and other motionsin order to drive harater animation, understand sign language, serve as input togames and other software, and reognize ations [32, 40, 44, 104, 112, 122℄. Finally,a number of ongoing projets seek to ombine disparate traking skills in an e�ortto endow \intelligent" houses with an awareness of their oupants and an ability tointerat with them [73, 107℄. These examples represent just a small sample of thediverse potential appliations of visual traking researh.Traditionally, the emphasis in framing the visual traking problem has been onestimation [86, 94℄. Given a set of data that we wish to represent onisely witha parametri model, an estimator is a proedure for �nding the parameters of themodel whih in some sense best �ts the data. In traking, the parameters (knownolletively as the state) are typially time-varying, salient harateristis of an objet



3

Figure 1.1: Multiple distrations ompliate trakingin the �eld of view. Common hoies inlude loation in the image, depth along theamera axis or image sale, orientation in the image plane or three dimensions (3-D),veloity and/or aeleration of any of these quantities, shape (possibly allowing fornonrigid deformation), surfae properties like olor, and so on. The data availableto guide estimation are, theoretially, all of the images observed up to the presenttime. However, unless the projetion of the objet oupies the entire image area, theobjet model is generally only suÆient to explain a fration of the data. Therefore, astandard proedure is to segment out the portion of the image data whih orrespondsto the objet and use it alone for estimation. This assumes that the objet's imageprojetion an be unambiguously disriminated from the rest of the image.This basi approah has led to muh fruitful researh on traking topis suh asinferring 3-D struture from 2-D images [106℄ and dynamis [18℄|how to keep upwith a moving target by prediting where it will be next. These kinds of problemsare hallenging in their own right. But as visual traking moves out of the laboratoryand into the real world, ontrolled onditions disappear and it beomes onsiderablymore diÆult to aurately identify an objet's image projetion. Unsurprisingly, the



4same visual phenomena noted above whih are problemati for people also interferewith estimation: agile motion, distrations, and olusions. We de�ne agile motionas a sustained objet movement or aeleration that exeeds a traker's dynamipredition abilities. Its ourrene an undermine the estimation proess beause itrenders the putative loation of the objet's image projetion unertain, ompliatingeÆient segmentation. A further obstale to lear-ut segmentation is a distration,or another sene element whih has a similar image appearane to the objet beingtraked. For example, the numerous penguins in the rookery shown in Figure 1.1hinder any e�ort to trak just one bird. A naive penguin segmenter may returnmultiple penguin-ontaining image regions or it may isolate a unique-but-wrong one.Either outome will ause the estimator to work from an inorret data set. Finally,olusion results when another sene element is interposed between the amera andthe traked objet, bloking a portion of the objet's image projetion. This resultsin inomplete data or no data being supplied to the estimation algorithm.These phenomena are worrisome beause of their potential to bias a traker'sestimates by polluting or deimating the data. Moreover, if a visual disturbanelasts too long or is too severe, the estimator/traker an e�etively beome onfusedand lose trak altogether of the objet. By mistraking, we mean that some riterionfor the quality of the state estimate over the duration of the traking task is notsatis�ed. Suh a riterion might be that the di�erene between the state estimateand the ground truth state (insofar as it is knowable or humanly assessable) is nevergreater than a ertain threshold, or at least for no longer than a preset length oftime. Sine visual disturbanes are ubiquitous in everyday situations, methods tooverome them are ritially important if visual traking is to be robust.The aim of this dissertation is to analyze some of the essential auses of distur-banes in traking and outline a omprehensive omputational framework for deal-



5ing with them. At the most fundamental level, it seems lear from our expositionthat these problems require an approah that ombines both estimation and orre-spondene. Correspondene is the question of how to determine what image data toproperly assoiate with the objet being traked and therefore to base the estimationproess on. We ontend that by ombating the various forms of the orrespondeneproblem that they engender, we will be able to ounterat many of the negativee�ets of agile motions, distrations, and olusions on aurate estimation.We will takle these problems with two broad approahes. First, we will desribeseveral data assoiation [5℄ versions of the Kalman �lter [69℄, an estimation tehniqueommonly used for visual traking, that are speially onstruted to handle ertainlasses of these ourrenes. Two of the data assoiation �lters that we present areexisting algorithms from the radar and sonar literature that we have made nontrivialmodi�ations to in order to adapt to vision. We will also introdue two other, moresophistiated �lters, that are novel. The standard Kalman �lter requires tinkeringbeause in order to assure an optimal estimate it assumes a Gaussian distributionon target observations. Thus, it may fail when this assumption is violated, as is thease when a distration or olusion indues a multimodal distribution on target-likeobservations.The seond part of our strategy is a method of de�ning a traked objet moredistintively so that visual disruptions happen less frequently and with less severity.Distrations are de�ned as image features that are similar to the target, so a morespei� target desription (e.g., \red triangle" instead of just \red") tends to reduethe number of suh features. A de fato desription of an objet is given by theset of modalities|appearane, olor, shape, et.|used to trak it, leading us toemploy onjuntions of modalities for greater robustness. Geometri relationshipssuh as \triangle-below-irle" instead of just \triangle" an also be added to an



6objet desription to boost distintiveness. The overarhing aim of these measures isto redue or eliminate the inidene of non-target-originated observations and thusthe degree to whih the assumption of a Gaussian distribution is not met.Exeptions to the Kalman �lter's Gaussian assumption do not neessarily ausemistraking. They simply remove the guarantee of optimality, whih in any aseis rarely ahievable for real-world images. Thus, the algorithms we will presentdo not seek to ompletely eliminate problems, only to mitigate them. Suboptimalperformane an, of ourse, result in mistraking. Our laim is that these tehniqueswill help many trakers perform at a satisfatory level in a wider range of visualsituations.This work is primarily organized around an analysis of three interpretations ofdistrations and olusions in the ontext of estimation, and the desription of aseries of �lters tailored to deal with them. First, we treat visual disturbanes asrandom, transitory events. This prompts the simplest of the four data assoiation�lters that we will present: the Probabilisti Data Assoiation Filter (PDAF) [5℄.Seond, we examine the ase where disruptions are aused by other traked objets.The Joint Probabilisti Data Assoiation Filter (JPDAF) [5℄ and Joint LikelihoodFilter (JLF) are responses to this interpretation. Finally, we allow that disruptionsmay be persistent and of unknown origin. Our strategy in this diÆult situation is tode�ne the objet more distintively: the Constrained Joint Likelihood Filter (CJLF)is a method for onjoining trakers of di�erent modalities that are geometriallylinked. Eah of these �lters (in the order just listed) inorporates the ore of theone preeding it while adding more funtionality. Thus, for example, the PDAFan withstand noisy visual phenomena that may be distrating, but the JPDAFompensates for these and distrations aused by other targets.As the PDAF and JPDAF are based on the Kalman �lter, they work with point-
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Figure 1.2: Noise-like distrations due to falling snowlike measurements rather than diretly on images. The other major omponent ofthis dissertation is therefore a proess for segmenting a disrete set of image areasthat resemble the target (where resemblane is a metri that depends on the modalityused for traking) and supplying summaries of these as measurements to the dataassoiation �lters, inluding the JLF and CJLF. The term \measurement" thus servesas a onvenient shorthand for oherent subsets of the image data that may be usedfor state estimation. It is the data assoiation �lters that address the orrespondeneportion of the visual traking problem de�ned above by seleting or weighting theinuene of these alternatives on estimation.We will now examine the three interpretations of visual disruptions and the dataassoiation �lters that they motivate in somewhat more detail.Noise An often-plausible interpretation of multiple or missing target-like observa-tions results from asribing them to random visual events. The image is typiallyorrupted by noise generated by the amera CCD or video apture devie, but suhe�ets are usually only signi�ant for targets projeting to very small image areas.



8Another kind of transient event that an hamper objet traking is due to seneproesses suh as dazzling sun reetions on a hoppy body of water, or bad weatherlike the falling snow in Figure 1.2, whih results in a spekled foreground. Thesephenomena an distrat estimation by ausing false target-like observations if theyand the objet have similar olorations, or if the segmentation proedure is sensi-tive to strong motion or intensity ues. Alternatively, the noisy image pathes mayperiodially obsure the target, suppressing the expeted target-originated observa-tion. If the orrespondene mehanism is too narrow in the data it allows to beused for estimation (piking only one of several possible observations, for example),it may exlude the orret data and eventually be pulled away from the target. Byonsidering more data, our adaptation of the PDAF algorithm to vision lessens thehane of a misstep and thus improves robustness. Assuming that their distributionis roughly uniform or Poisson and that their density is not too great, the e�ets ofthe transient, non-target-originated observations anel eah other out and the morepersistent target-originated observation dominates the estimation proess.The segmentation proedure that we introdue for �nding measurements uses anonloal searh in order to onsistently identify multiple possible soures of ambigu-ity. A byprodut of this nonloality is improved performane when the target makesagile movements. The sudden jump of a target away from its expeted state anonfound trakers that are not prepared for lutter, but by asting a wide net fordistrators our algorithm athes up with suh motions and resumes normal traking.Other objets When trying to trak multiple similar or idential objets, by de�-nition there is more than one image feature that mathes the objet desription well,suh as with the penguins in Figure 1.1. This means that the segmentation proedureof a single traker running in isolation will onsistently return multiple measurements



9when the objets are lose to one another. Beause these measurements are persis-tent, they invalidate the assumption of the PDAF that only one measurement isdue to the target and that the rest stem from noise. The inlusive use of data bythe PDAF bak�res in this ase, yielding a state estimate that is a ompromise be-tween the estimates that would be obtained if a separate estimator were orretlyassoiated with eah persistent measurement. The JPDAF e�etively implementsthis approah by extending the PDAF to share information between trakers. Themaintenane of a logi of assoiations prevents di�erent trakers from laiming thesame measurement and thus substantially improves the quality of the data they usefor state estimation. To ensure that the trakers are all onsidering the same poolof measurements, a joint segmentation proedure is neessary to merge the resultsof the individual segmenters (whih only look at the image in the neighborhood ofwhere they expet their objet to projet) and eliminate dupliates.The JPDAF only works for traking a set of idential objets and does not on-sider the possibility of targets oluding one another, a fairly frequent ourrene. Anolusion modi�es the observed image projetion of an objet, ausing a mismathwith the expetations of the standard segmentation proedure. The JLF expandsthe sharing of information between trakers in order to dedue olusions duringsegmentation, resulting in better measurements. Moreover, the JLF evenly assortstrakers among image features as the JPDAF does, but it improves on the JPDAFby allowing a mixture of di�erent trakers to interat|e.g., a olor-based trakerand a shape-based traker.Persistent, unknown features Distrations and olusions may also result fromuntraked, non-noise sene elements. This lass of phenomena is diÆult to ounter-at within the ontext of a data assoiation �lter. Rather, we will pursue a strategy



10

Figure 1.3: Conjuntions of parts and attributes desribe objets more distintivelyof trying to redue the inidene of persistent disturbanes by de�ning the targetmore distintively. Consider the soer players in Figure 1.3. A olor-based trakerassigned to the shirt of the player on the right may have trouble with distrationsbeause there are other red regions in the image. However, by linking the shirttraker to a white-shorts traker via a onstraint, we eliminate red regions that arenot above white regions as potential distrators. A still-more distintive desriptionof the shirt would result from taking into aount the appearane of the logo on itsfront. Then we would be looking for red regions with the proper insignia above whiteregions, a unique feature in this image.Adding geometri parts to an objet desription, of ourse, makes the e�etivetarget bigger. A bene�t of inreased size is a orresponding derease in the negativeinuene of typial olusions. If we were traking the red player's shirt alone, forexample, the arm of the yellow player in front on him would bias any estimateof its size. When traked in onjuntion with the logo and the shorts, whih areunoluded, the shirt traker has additional sale information to help improve itsestimates.



11The CJLF is an extension of the JLF that inorporates onstraint information tomore distintively desribe and thus more e�etively trak an objet. It provides aframework for the ombination of multiple attributes, suh as the olor of the shirtand appearane of the logo, and multiple geometri parts, suh as the shirt andshorts.1.1 ThesesThis dissertation is onerned with mitigating the e�ets of disruptions in visualtraking aused by distrations, olusions, and agile motions. We observe thatthese phenomena ause ambiguity about whih image features to base estimation on.Therefore, we ontend that a orrespondene problem must be addressed in onertwith estimation in order to ensure robust traking. Our approah is to lassifyseveral possible soures of these disturbanes|namely, noise, other traked objets,or persistent, unknown sene elements|and onstrut or adapt data assoiation�lters apposite for eah one. A guiding priniple in the design of these �lters is theintegration of multiple soures of information. Multiple trakers share informationabout orrespondenes to avoid interferene and single-objet trakers are de�ned asonjuntions of multiple attributes and parts for greater distintiveness.Our approah to distintiveness leads to a building-blok strategy of omposingomplex trakers from relatively simple piees (in terms of geometry and modality)instead of reating a monolithi algorithm speialized for a partiular task. Thismakes our framework exible with regard to what is being traked and amenable tothe inorporation of tehniques used by other researhers or devised in the future.Briey, this dissertation makes the following ontributions to vision-based trak-ing:



12� We adapt and apply data assoiation methods (PDAF, JPDAF) to vision forsigni�antly better traking performane in the presene of noise and multipletargets� We de�ne a robust, general algorithm for �nding a set of good mathes to thetarget's image projetion� We put di�erent traking modalities (olor regions, SSD features, and snakes)into a ommon framework for omparison and interoperation; our approah toolor region traking is original� We introdue a joint traker (JLF) that supersedes the JPDAF by aom-modating trakers with di�erent modalities, handling partial olusions, anddeduing depth relationships from the image� We extend the JLF to inorporate geometri onstraints between low-leveltrakers, inluding a novel notion of \layered" attributes of the same imageareas1.2 OverviewChapter 2 reviews the probabilisti foundations of the visual traking problem, ex-plains the assumptions of our Kalman �ltering approah, and de�nes some usefulterms.Chapter 3 derives a formulation of image similarity for three modalities that relyon olor, shape, or appearane to de�ne the target. De�ned more generally, wewill all these modalities homogeneous regions, snakes, and textured regions, respe-tively. These ways of interpreting images will onstitute the basis of the segmentationmethod outlined in the following hapter.



13Chapter 4 addresses noise and agile motion as auses of mistraking. First, theimage preproessing neessary for suessful adaptation of data assoiation �lters tovision are analyzed. Spei�ally, we examine gradient asent methods for obtaininga single best hypothesis with whih to update the state estimate, and then detail aproedure that extrats a set of good hypotheses using random sampling. It reviewsa measurement-based traking algorithm from the radar and sonar literature, theProbabilisti Data Assoiation Filter (PDAF), that performs well in the presene ofnoise. The modalities from Chapter 3 are used to trak various objets that exhibitagile movement and in the presene of bakground lutter.Chapter 5 examines the problem of interferene aused by other known objets.It explains two tehniques for traking that extend the work of the previous hapterto manage a known number of multiple similar or interating objets. The �rst is anexisting extension to the PDAF for joint traking, the JPDAF, whih is explainedand adapted to vision with a re�nement to the measurement generation proess thatombines gradient asent with random sampling. The seond tehnique overed, theJoint Likelihood Filter (JLF), is a new algorithm that handles targets of di�erentmodalities that overlap one another by reasoning about their depth ordering.Chapter 6 introdues methods for desribing a traked objet more distintivelyin order to minimize the deleterious e�ets of unknown, persistent distrations in thesene. An extension to the JLF, the Constrained Joint Likelihood Filter, is explainedthat de�nes omplex objets via geometri onstraints between trakers of like anddi�erent modalities.Chapter 7 surveys related work on traking by other researhers and analyzes itsrelationship to the tehniques promulgated here.Finally, we sum up our ontributions in Chapter 8 and disuss future researhdiretions.



Chapter 2
Bakground
Mumford [89℄ and others have suggested that many problems in vision may be astas an attempt to �nd a maximum a posteriori (MAP) estimate [86℄ of the state ofthe world given a signal that is a transformed version of it. The image I pereivedby a amera or eye at any given moment is the result of a transformation of theworld W ditated by the laws of physis. Bayes' theorem [89, 101℄ provides a toolfor reasoning probabilistially about the world from what is seen:p(W jI) = p(I jW)p(W)p(I) (2.1)p(I) an be dedued from the other terms by p(I) = R p(I jW)p(W)dW (whereW 2 W, the spae of all possible worlds), so it is typially treated as a normalizingonstant 1=k. A MAP estimate of the state of the world, whih is not neessarilyunique, is a maximally likely one given the observed image: argmaxWp(W jI). Themaximum likelihood (ML) estimate [38, 101℄ is equivalent to the MAP estimateassuming a uniform (and therefore noninformative) prior probability on the state ofthe world p(W).To trak, an observer fouses its interest on a small part of the world, whih we14



15all an objet or target, and takes past images into aount. At time t the stateXt 2 X represents the urrent estimate of the objet's salient parameters (where Xis a subspae ofW). Instead of a single image, a traking estimator uses the sequeneof images It; It�1; : : : observed so far. Thus, the traking task in the MAP frameworkis to estimate a state that maximizes p(Xt j It; It�1; : : :). Applying Bayes' theoremand rearranging yields the following expression [5, 60℄:p(Xt jIt; It�1; : : :) = ktp(It jXt)p(Xt jIt�1; It�2; : : :) (2.2)Here p(Xt j It�1; It�2; : : :), whih summarizes prior knowledge about Xt, is a pre-dition based on the previous state estimate and knowledge of the objet's dy-namis. In order to simplify the last term on the right hand side, we must as-sume that objet dynamis are suh that states form a Markov hain [101℄, sop(Xt jXt�1;Xt�2; : : :) = p(Xt jXt�1). This yields p(Xt j It�1; It�2; : : :) = RXt�1 p(Xt jXt�1)p(Xt�1 jIt�1; It�2; : : :).The quantity p(It jXt) desribes the relative probability of observing a partiularimage at time t given the urrent state. We all this the image likelihood. The imagelikelihood depends on the physis of image formation and noise that may orruptwhat is expeted [75℄. Assuming that the laws of optis are �xed and that noisesoures are roughly stationary, we an drop the time indies and refer to the imagelikelihood as p(I jX).In order to de�ne p(I jX) more preisely, we will �rst introdue a few terms. Letthe spae of images be I and � : X ! I be an image predition funtion whih de-sribes the expeted image projetion of the target assuming that it is in a partiularstate. Depending on how detailed it is, X alone may be insuÆient to predit an im-age, making it neessary to build information aboutW into � (besides physial laws



16themselves). For example, if they are not expliitly inluded in X, assumptions mustbe made about lighting, olusions, bakground, reetane properties of the trakedobjet, amera variables suh as foal length, and so on. In this sense, modeling theimage formation proess is losely related to omputer graphis [43℄.The image atually observed also depends on noise. Noise is a fator that in-reases unertainty about the exat image projetion of the traked objet. With nounertainty, the image likelihood p(I jX) would be unity at the exatly the expetedimage and zero everywhere else. With it, other images tend to have a likelihoodproportional to their degree of similarity to the expeted image.An eÆient algorithm for omputing the MAP estimate of Equation 2.2 whenp(Xt j It; It�1; : : :) is Gaussian is the Kalman �lter [5, 69℄. In order for p(Xt jIt; It�1; : : :) to be Gaussian, p(I j X), p(Xt j Xt�1), and the prior probability ofthe state before any images are viewed must be Gaussian. Some possible auses ofand remedies for non-normality are disussed in [60℄; in Chapters 4 and 5 we presentdata assoiation �lters that handle ertain kinds of violations of the Kalman �lter'sassumptions.Traking �lters suh as the Probabilisti Data Assoiation Filter (PDAF) andJoint Probabilisti Assoiation Filter (JPDAF) [5℄ were originally developed fortraking airraft radar blips, a domain that di�ers from vision-based traking ina number of respets. Most importantly, many radar-type targets are simply points,limiting their state to position and dynamis. We need to inlude suh parametersas sale, orientation, olor, and shape. Furthermore, the unmodi�ed data assoiation�lters assume that a measurement or measurements are impliitly provided to them.The meaning of a \measurement" in the ontext of raw images is not immediatelyobvious. As we noted in the previous hapter, we de�ne measurements to be imageareas that math the target's expeted image projetion well. A disrete list of the



17modes of the image likelihood funtion redues the data any state estimator mustproess, while apturing the intuitive notion of alternative andidate states that atraker might be in.For radar blips, a target might be expeted to be observed as a bright pointon a dark bakground, so simple thresholding would quikly segment out all high-likelihood hypotheses for the target loation. These hypotheses ould be suintlyrepresented as a list of (x; y) pairs. Generating visual target measurements is usuallymore diÆult than thresholding, and their extents require more information to beadequately summarized than simple image loation. Possible measurement parame-ters inlude geometri harateristis relevant to the target state suh as the loationof the area's enter and its height, width, and orientation. These parameters de�ne ameasurement spae Z suh that a point Z 2 Z is related to a stateX via a ontinuousmeasurement funtion H(X) = Z. The measurement funtion may simply reduethe dimensionality of X by dropping its temporal parameters, or it may also desribea more ompliated relationship between what is measured and what is estimated.The bases for p(I jX), and therefore for the measurement generation proedurethat is desribed in Chapters 4 and 5, are the form of the predited image projetionof a target �(X) and the method for quantifying the similarity of the image I tothat predition. Both of these depend on what we all the modality used to identifythe objet. A traking modality is a visual attribute suh as a spei� shape, olor,diretion of motion, et. that onstitutes a traking algorithm's omplete desriptionof its target. For example, suppose we want to trak a bright red ball. We mighthoose a olor modality to predit the hue of the ball's irular image projetionand to de�ne a metri on irular areas of hue in order to gauge the similarityof our predition to the atual image. This method does not exploit all availableimage information about the ball (ignoring, for instane, any designs printed on it



18or its motion), but makes a hoie about what information is relevant and adequate.The at of seleting a modality is �rst an aknowledgement that there is as yetno all-purpose, exat theory of objet appearane, and seond an assertion thatfor eÆieny's sake only partial information, if piked judiiously enough, an yieldsatisfatory traking performane.The question of whether the information about X transmitted by a modalityis the same as that arried by I is aptured by the notion of a suÆient statisti[27℄. Most modalities are not suÆient statistis, so we should be onerned abouttheir e�et on the auray of estimating X. It is ertainly possible, based on theimage environment and target, to use a traking modality that removes too muhstate information to be useful. Of ourse, the image itself may not ontain enoughinformation about the objet for it to be traked. The methods desribed in thisdissertation plae the ultimate responsibility for determining the best modality fora given traking task, or whether a task an indeed be aomplished, in the user'shands. In Chapter 8, we sketh a possible approah to automating these deisions.The next hapter desribes in detail three di�erent, omplementary modalitiesthat we use for traking.



Chapter 3
Traking Modalities
In this hapter we disuss the �rst omponent of our approah to traking solitaryobjets assuming they are the only salient visual features in the image. This is theform of the likelihood funtion p(I jX) for the various modalities used to analyzethe image. The image likelihood is expliated for three spei� types of traker:homogeneous regions, textured regions, and snakes.3.1 RegionsThe term \region" has a preise mathematial meaning (i.e., an open, onneted set[50℄) that di�ers slightly but signi�antly from the sense in whih this dissertationuses it. For visual traking, we de�ne a region as the projetion onto the imageof a simply onneted mathematial region lying on a smooth surfae. We willsubsequently refer to the mathematial region that projets to an image region as apath in order to avoid onfusion and emphasize its relationship to a physial surfae.The image predition funtion � de�ned in Chapter 2 has a few essential ompo-nents for a given region R. Whether derived from the region's state X or taken asonstants, ertain values are neessary to simulate the image formation proess and19
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Figure 3.1: Viewing geometry for the projetion of a surfae path P onto an imageregion R.arrive at a predited image �(X). One set of required variables desribes the geom-etry of the path P that gives rise to R, inluding shape, loation in R3 relative tothe viewer, and orientation. A seond group of variables summarizes the reetaneproperties of P , suh as its pattern of albedos for various spetra (e.g., oloration)and bidiretional reetane distribution funtion (BRDF) [54℄. Finally, informationabout sene illumination, amera parameters, olusions or inter-reetions involvingthe surfae S assoiated with P , and other inidentals must also be enoded.This setion examines two spei� kinds of regions distinguished by the reetaneproperties of P . Let P : P ! R3 be a funtion desribing the intrinsi olor patternover P in RGB spae (akin to a omputer graphis texture map [43℄). If P (P ) isonstant, then we all R a homogeneous region. If P (P ) has signi�ant intensitygradients both vertially and horizontally (P may be urved, but its simple onnet-edness allows it to be mapped to R2), then we all R a textured region. A Lambertian[54℄ BRDF is assumed for both homogeneous and textured regions. The di�erenesin P (P ) between the two region types lead to alternative formulations of the imagepredition funtion � and similarity between the atual and predited images.



213.1.1 Homogeneous RegionsLet R : R! R3 be a funtion desribing the irradiane (image brightness) of thehomogeneous region R. Aording to the Dihromati Reetion Model (DRM) [74℄,if P is Lambertian the range of R lies on a line (the matte line) in RGB spae passingthrough (0; 0; 0). The diretion of the matte line desribes the intrinsi olor of P ,while the distribution of R(R) along it is governed by the urvature and orientationof P , as well as the amount of ambient illumination. In pratie, amera noise anddepartures in P from perfet uniformity makes the matte line a luster, and fatorssuh as gamma orretion and the limited dynami range of the amera an introduenonlinearities in the luster shape.Furthermore, if P is glossy then speularities give rise to a seond line (the high-light line) in RGB spae that intersets the matte line in a skewed-T on�guration.The diretion of the highlight line is determined by the olor of the light soureausing the speularity. The matte line and the highlight line ompletely desribeR under the DRM.For many interesting materials suh as human skin, ordinary lothing fabri, andautomobile paint, the DRM is a useful, aurate reetane model. In previous work[95℄, we desribed a method for modeling a given region R's olor by parametrizingR's distribution along the matte line alone. Before starting traking, the user man-ually selets a set of pixels in R that are non-highlighted, non-saturated, and havesigni�ant intensity variation to get a well-de�ned, linear distribution. Using prini-pal omponents analysis (PCA) or singular value deomposition (SVD) [91, 94℄, anellipsoid whose major axis is aligned with the matte line is �t to the sampled pixels'olor distribution in RGB spae.This is aomplished as follows. Suppose D is a 3 � K matrix of the K RGB



22values hosen by the user. The 3 � 3 ovariane matrix for D is de�ned by �ij =PKk=1(Dik � �i)(Djk � �j), where �1 is the mean red omponent r of the pixelsseleted, �2 is the mean green omponent g, and �3 is the mean blue omponentb. Singular value deomposition fators any M � N matrix A for whih M � Ninto A = UWVT , where U is an M � N olumn-orthogonal matrix, W is anN �N diagonal matrix, and V is N �N and orthogonal. For symmetri A suh asovariane matries, U = V.The SVD of � has a geometri interpretation that we larify by rewriting it as� = RS2RT , where R is a 3�3 rotation matrix and S is a 3�3 saling matrix thatde�ne an ellipsoid in R3 . This ellipsoid, whih is obtained by saling the unit sphereby S, rotating it by RT , and translating it by T = (�1; �2; �3)T , �ts R's matte lusterand hene models its olor. The steps of the proess leading from sample seletionto model de�nition are illustrated in Figure 3.2(a-d) for a region orresponding tothe front of a soer player's orange jersey.At the level of a pixel (x; y) within the region R desribed by the urrent state,the image predition funtion � postulates that its olor will simply be T. We usethe Mahalanobis distane [38℄, whih is the number of standard deviations � from apoint to the enter of a multivariate Gaussian distribution, to measure the similarity between the predited pixel olor T and the atual olor I(x; y) at that image loa-tion. The funtion  plus a representation of the region's geometry will onstitute anoverall image similarity metri, whih is disussed below. The Mahalanobis formula-tion results in (I(x; y);T) = [(I(x; y)�T)T ��1 (I(x; y)�T)℄1=2. The inverse of theovariane matrix is easily omputed from the SVD as ��1 = RS�1 S�1RT , yieldinga simpli�ed form of the pixel similarity funtion as the magnitude of a transformedvetor: (I(x; y);T) = jS�1RT (I(x; y)�T)j.The pixel similarity  is shown in graphi form for the soer player's jersey in



23Figure 3.2(e). In it, (I(x; y);T) = 0 is represented as a white pixel (gray level 255)at (x; y), (I(x; y);T) � 3 as blak (gray level 0), and the gray levels of intermediateimage similarities are linearly interpolated.GeometryAnother key omponent of the image predition and similarity funtions is the geo-metri representation of R. For a region, we want to emphasize rough properties suhas loation, sale, aspet ratio, and orientation over its preise shape. We thereforeharaterize a region as a retangle parametrized by image position x, y, size w, h,and orientation �. The retangle C used to represent R is the best-�tting one aord-ing to the riterion that it minimizes the objetive funtion fR(C) = jR�Cj+jC�Rj,where jRj is the area of region R and R1�R2 = f(x; y) : (x; y) 2 R1 and (x; y) =2 R2g.A retangle is obviously only an approximation to the atual boundary of mostregions, but it is a fairly good one for many interesting traking targets suh ashuman body parts (fae, torso, and limb segments); balls (soer, basketball); vehilesetions (ar sides, airraft fuselages); and manipulable objets (srewdriver handles,oppy disks, et.).Furthermore, the retangular shape approximation assumes that the path Pgiving rise to R does not rotate out of plane (i.e., out of a plane parallel to the imageplane) or undergo nonrigid deformations. In general, suh ourrenes an dereasethe loseness of �t between C and R. However, if P is de�ned as the portion ofthe surfae S visible to the viewer and S is spherial, the traked objet an rotateout of plane with two degrees of freedom without degrading C's goodness-of-�t. IfS is ylindrial, the traked objet has one degree of freedom out of plane. Theseproperties are often useful when traking, for example, people's heads, whih areroughly spherial.
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(a) (e)
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B(b) () (d)Figure 3.2: Color-based membership. (a) Initial image with loation of 24� 32 pixelretangular sample overlaid; (b) Close-up of olor sample; () RGB representationof olor sample; (d) � = 1 ellipsoid �tted to sample using priniple omponentsanalysis; (e) Pixelwise olor similarity  of initial image to model via Mahalanobisdistane indued by ellipsoid.
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(a) (b)Figure 3.3: Homogeneous Region. (a) The geometry of a region for an arm trakerwith the positive enter C and inhibitory frame F labeled; (b) Pixel similarity  ofthe image to the modeled arm skin olor, with R's geometry overlaid. (Input imageourtesy of J. MaCormik)Image likelihoodThe boundary of R is not known a priori, so two heuristis are used to identify it:(1) pixels for whih  is low are likely to be in R; and (2) pixels for whih  is highare likely to be outside R. By this logi the retangle-�tting objetive funtion fis minimized by minimizing the sum of  over all pixels inside C while maximizingit outside. EÆieny allows only a relatively small area of the image outside C tobe analyzed, and the reetane ontrast assumed in the seond heuristi betweenR and its surroundings is only reasonable loally. The loal image neighborhoodof the positive enter C is delineated by a retangular border F whih we all theinhibitory frame. To balane its inuene on the retangle-�tting objetive funtionf , F is sized so that jF j = jCj while maintaining the same aspet ratio. This meansthat wF = wCp2 and hF = hCp2. A good but suboptimal �t of a retangle and itsframe to a human arm region is shown in Figure 3.3.These onditions are satis�ed by the following expression for the onditional prob-



26ability of a homogeneous region:phregion(I jX) = sig ( 1�2hregion Xx;y2C[F a(x; y) �  hregion(x; y)) (3.1)where sig (x) = 11+e�x and a(x; y) is the fration of the total area jRj of the regionR represented by the pixel at (x; y) (e.g., 1jRj if every pixel is ounted|di�erent ifsubsampling or adaptive sampling is used). �2hregion is a term that represents thevariane of the sum; explanations of its purpose and the values assigned to it forhomogeneous regions and the other modalities are given at the end of the hapter.The degree to whih eah pixel in the region �ts the membership model is given by hregion (x; y) = 8><>: �(I(x; y);T) if (x; y) 2 C(I(x; y);T) if (x; y) 2 F (3.2)Referring bak to the terms de�ned in Chapter 2, the image predition funtion� for regions posits an image onsisting of a retangle of olor de�ned by  framedby a ontrasting olor, with loation, size, and orientation desribed by the state X.3.1.2 Textured RegionsA textured region is de�ned as a region whose path P has an intrinsi olor patternP (P ) with signi�ant intensity gradients both vertially and horizontally. A stronggradient allows sum-of-squared-di�erenes (SSD) methods [80, 109, 51℄ to suessfullyestimate the region's geometri and photometri transformations. Here we limit ourattention to aÆne geometri transformations of an intensity path whose projetionis approximated by a retangle.We write R(R) to denote the pattern, similar to a homogeneous region's olorparametrization, by whih a textured region R is reognized. We model R(R) by



27having the user selet a retangular image sample IR of the target alled the refereneimage before traking is to begin. An example of the seletion step is shown inFigure 3.4(a) and the resulting referene image in Figure 3.4().At any moment during traking, the state X of the objet spei�es the shape ofR as a warp of the referene image. That is, X postulates that the urrent imageontains a shifted, rotated, saled, and sheared version of IR, whih we all thepredited image IP . The image predition funtion � thus embeds IP in the urrentimage at the appropriate loation. IP an be derived from X by performing an aÆnewarpA (assumed part of the state) with bilinear interpolation [43℄ on IR. In pratie,the image inside the retangle predited by X is inversely warped using A�1 to geta omparison image IC that is the same size as the referene image. An example ofthe predited shape and loation for the textured region referred to above is shownin Figure 3.4(b); its assoiated omparison image is depited in Figure 3.4(d).The gradient of textured regions makes feature omparison within regions suÆ-ient to measure saling, obviating the inhibitory frame neessary for homogeneousregions. An SSD formulation expresses the onditional probability of the image Igiven the state X as inversely proportional to the di�erene between the refereneimage and the omparison image:ptregion(I jX) = exp (� 1�2tregion Xx;y2IR a(x; y) �  tregion(x; y)) (3.3)where a(x; y) is the fration of the total area of the referene image jIRj representedby the pixel at (x; y) and tregion(x; y) = (IR(x; y)� IC(x; y))2 (3.4)An image representing the residual for the example is shown in Figure 3.4(e).
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(a) (b)
() (d) (e)Figure 3.4: Textured Region. (a) Seleting the referene image for a fae traker;(b) One possible state; () Referene image IR from (a); (d) Normalized omparisonimage IC for the state in (b); (e) Di�erene image jIR � IC j.



293.2 SnakesWe de�ne a snake [18, 117℄ as the projetion of a ontinuous ontour lying on asmooth surfae onto the image. Analogous to the nomenlature of path and regionin Setion 3.1, we will use the term ontour exlusively to refer to the urve on thesurfae in R3 and the term snake for its image projetion. The ontour may beeither losed or open. At eah point along its length the ontour has a type that fallsinto one of the following ategories: (a) it delineates an edge on the surfae betweenregions with ontrasting properties, (b) it follows the silhouette of the surfae againsta ontrasting bakground, or () it traes a line on the surfae that ontrasts with theloal properties on both sides. Whihever the type of the ontour, the ontrastingproperties that de�ne it may be intensity, olor, texture, or some more ompliatedvisual quantity. In this dissertation we assume that the ontrast takes the form ofan intensity di�erene, permitting the use of standard edge detetion algorithms.In the next two subsetions we desribe two edge detetion tehniques and amethod of snake shape representation.3.2.1 Edge DetetionA prerequisite for �tting a shape model to an intensity disparity urve is to �ndthe edges in the image. If the image is olor, it is �rst onverted to graysalebefore performing an edge detetion operation. For intensity, we use the lumi-nane omponent Y of the standard RGB ! Y UV olorspae onversion givenby Y = 0:299R+ 0:587G+ 0:114B [93℄.Numerous approahes to extrating edges from images have been investigatedin the vision literature. An in-depth disussion of the pros and ons of the variousmethods is beyond the sope of this dissertation, so we will simply present two that



30we have used suessfully. The Sobel edge operator [111℄ is less sophistiated but hasthe virtue of speed, while the Canny algorithm [23℄ is a widely-aepted benhmarkthat requires onsiderably more proessing. The two methods are desribed below.SobelSobel edge detetion [111℄ approximates the gradient of the image intensity funtionrI = ( �I�x ; �I�y ) = (Ix; Iy) by onvolving the image with a horizontal mask Sx andvertial mask Sy suh that Ix � Sx 
 I and Iy � Sy 
 I.Eah onvolution mask is separable into the produt of 1-D derivative masksDx = (�1; 0; 1),Dy = (�1; 0; 1)T and 1-D triangular smoothing masks Tx = (1; 2; 1),Ty = (1; 2; 1)T as follows:
Sx = TyDx = 0BBBB��1 0 1�2 0 2�1 0 1

1CCCCA ; Sy = DyTx = 0BBBB��1 �2 �10 0 01 2 1
1CCCCA (3.5)The gradient magnitude of I indiates the strength of an edge and is approximatedby jrIj �p(Sx 
 I)2 + (Sy 
 I)2. It an be thresholded to eliminate weak edges bysetting jrI(x; y)j = 0 if jrI(x; y)j < � and binarized by setting all values above � tosome non-zero onstant.The result of Sobel edge detetion on a graysale image of a person's head ob-tained from an infrared amera is shown in Figure 3.5(b).CannyCanny edge detetion [23℄ resembles the Sobel method with extensive post-proessing.The image is �rst onvolved with a smoothing mask approximating a Gaussian withstandard deviation �. The Gaussian mask G is separable into horizontal and vertial



311-D masks Gx;Gy (where Gx = GTy ) whose widths depend on �. Trunating the tailof the Gaussian to 0 at 2:5 � yields, for example, a mask width of 7 for � = 1:0 andGx = (0:004; 0:054; 0:242; 0:400; 0:242; 0:054; 0:004). Using a Gaussian instead of athe Sobel triangular smoothing mask is superior from a �ltering standpoint, thoughsomewhat more expensive.Next, the blurred image G
 I is di�erentiated by onvolving it with the deriva-tive masks Dx and Dy. This is the same as di�erentiating the Gaussian mask andonvolving the result with the image. Spei�ally, G0x = Dx
G and G0y = Dy
G,yielding Ix � G0x 
 I and Iy � G0y 
 I. The magnitude of the estimated gradient isomputed as above: jrIj �q(G0x 
 I)2 + (G0y 
 I)2.Due to the smoothing, image edges are orrelated with rounded ridges in thegradient magnitude funtion rather than sharp spikes. The next step of the Cannyalgorithm, alled non-maximal suppression, attempts to remove all but the tops ofthese ridges for more preise edge loalization. Intuitively, we want to keep onlythose pixels whose edge strengths are higher than those of their two neighbors per-pendiular to the diretion of the edge (pixels with edge strengths of 0 are thrown outimmediately). The oordinates of those neighbors for a pixel (x; y) are (x+ u; y+ v)and (x�u; y�v), where (u; v) = ( Ix(x;y)jrI(x;y)j ; Iy(x;y)jrI(x;y)j) is the unit vetor along the gradi-ent diretion. (x+ u; y+ v) and (x� u; y� v) are not integer oordinates in general,so eah of their gradient magnitudes must be interpolated from the four surround-ing integer oordinates, one of whih is always (x; y). Several di�erent interpolationmethods that trade eÆieny for auray are ommonly used; the most aurate isbilinear interpolation [43℄.Finally, a form of thresholding alled hysteresis is applied to remove weak edges.Rather than a �xed threshold as with the Sobel tehnique, upper and lower thresholds�high and �low, respetively, are employed. Pixels (x; y) for whih jrI(x; y)j � �high



32are aepted immediately, while pixels (x; y) for whih jrI(x; y)j < �low are rejetedimmediately. A pixel whose strength is between the two thresholds is only aeptedif it is onneted (in the eight-onneted sense) to a pixel above �high by a sequene ofpixels above �low. This redues the inidene of edges being broken up, or streaking,due to minor variations in gradient magnitude around a single threshold. �high and�low, whih are in units of edge strength, are typially derived from two other quan-tities �̂high and �̂low that the user sets diretly. �̂high 2 [0; 1℄ is a perentile thresholdon the distribution of edge strengths of the pixels surviving the non-maximal sup-pression step. A value of �̂high = 0:8, for example, indiates that �high should be setto whatever gradient magnitude is greater than 80% of the gradient magnitudes ofunsuppressed pixels. �̂low 2 [0; 1℄ is just the fration of this number that �low shouldbe set to: �low = �̂low �high.The result of Canny edge detetion is a binary image of edges and non-edges. Anexample output based on the IR head image used in the Sobel setion is shown inFigure 3.5().3.2.2 Shape RepresentationWe represent a snake as a periodi or nonperiodi, uniform, ubi B-spline [18, 56,120℄ onstrained to deform aÆnely. The spline approah allows an arbitrarily de-tailed desription of the shape of the traked objet, while the aÆne onstrainteÆiently aptures the snake's degrees of freedom if its assoiated ontour is a rigid,planar urve restrited to translation, saling, and in-plane rotation. Allowing un-onstrained deformations of the snake an ause mistraking beause it disardsinformation about the orret relative loations of snake segments. More omplexsituations suh as spae urves and perspetive and nonrigid transformations, how-ever, an be handled straightforwardly by adding dimensions to the state [18℄.



33Formally, a uniform, ubi B-spline is a urve � omprising N equal-length ubipolynomial urve segments �i between whih there is seond-order (C2) ontinuity.The ith urve segment is de�ned parametrially over 0 � u � 1 as a blend of fourontrol points pi; : : : ;pi+3 aording to:�i(u) = 4Xk=1 Bk(u)pi+k�1 (3.6)Using the C2 ontinuity ondition between urve segments plus a onstraint thatP4k=1Bk(u) = 1 for 0 � u � 1 (i.e., every point along a urve segment is a weightedaverage of the segment's ontrol points), we an dedue four unique ubi blendingfuntions that are valid for any urve: B1 = 16(1 � u)3, B2 = 16(3u3 � 6u2 + 4),B3 = 16(�3u3 + 3u2 + 3u+ 1), and B4 = 16u3. Written in matrix form, Equation 3.6beomes:
�i(u) = 16 (u3 u2 u 1) 0BBBBBBB��1 3 �3 13 �6 3 0�3 0 3 01 4 1 0

1CCCCCCCA
0BBBBBBB� pipi+1pi+2pi+3

1CCCCCCCA (3.7)
Let P = (X;Y) = (p1; : : : ;pM)T be a vetor of the entire B-spline's ontrolpoints. For periodi urves, M = N ; for nonperiodi urves, M = N +3 (assuming aubi B-spline). The analog of the parameter u for the length of the whole urve is s,where 0 � s � N . A vetor of global blending funtions G(s) = (G1(s); : : : ; GM(s))serves to transform s into its loal equivalent u and pik out the supporting loalblending funtions Bi aording to �(s) = G(s)P. Eah Gi is de�ned as:
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Gi(s) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
B4(s0 � i + 4) i� 4 � s0 < i� 3B3(s0 � i + 3) i� 3 � s0 < i� 2B2(s0 � i + 2) i� 2 � s0 < i� 1B1(s0 � i + 1) i� 1 � s0 < i0 otherwise

(3.8)
where s0 = s if � is nonperiodi and s0 = s� 4 if � is periodi and s �M � 3.Sine the snake may deform or move over multiple video frames, we index theurve and hene its ontrol points by time: �(s; t) = G(s)P(t). The initial on�g-uration of the ontrol points P(0) = (bX; bY) is derived from a user-seleted set �̂onsisting of n points along the urve whih we all the shape template. A simplemethod for doing this is to take the shape template points to be the endpoints of�'s urve segments. For nonperiodi splines, the user hooses n = N + 1 roughlyequally-spaed points so that �̂ = (�(0; 0);�(1; 0); : : : ;�(N; 0))T . The onditionthat the urve endpoints oinide with the �rst and last ontrol points is added toensure a unique solution, yielding the following set of simultaneous equations forP(0): 0BBBBBBBBBBB�

�(0; 0)�(0; 0)...�(N; 0)�(N; 0)
1CCCCCCCCCCCA =

0BBBBBBBBBBB�
1 0 � � � 0G1(0) G2(0) � � � GM(0)... ... ...G1(N) G2(N) � � � GM(N)0 � � � 0 1

1CCCCCCCCCCCA
0BBBBBBBBBBB�

p1(0)p2(0)...pM�1(0)pM(0)
1CCCCCCCCCCCA (3.9)

For a periodi urve, one fewer point in the shape template is required to speifyn = N segments, making �̂ = (�(0; 0);�(1; 0); : : : ;�(N � 1; 0))T . Also, there are



35two fewer unknowns and thus no need for extra onditions. The periodi analog ofEquation 3.9 is thus �̂ = (G(0); : : : ;G(N � 1))T P(0).The aÆne representation Q(t) of the snake is derived from the B-spline represen-tation P(t) as follows [18℄:Q(t) =M2640B�X(t)Y(t)1CA�0B�bXbY1CA375 (3.10)where M = (WT HW)�1WT H (3.11)W is an aÆne basis de�ned as:W = 0B�1 0 bX 0 0 bY0 1 0 bY bX 01CA (3.12)where 0 = (0; : : : ; 0)T , 1 = (1; : : : ; 1)T are M -vetors, and H is the metri matrix[16℄ given by: H = 0B�PNs=0GT (s)G(s) 00 PNs=0GT (s)G(s)1CA (3.13)Variations in the snake's ontrol points over time are desribed by an aÆne trans-formation of the shape template's ontrol points:0B�X(t)Y(t)1CA�0B�bXbY1CA =WQ(t) (3.14)Thus, the full B-spline an be dedued from Q, but is restrited to a smaller-dimensional aÆne subspae of the on�gurations than would be possible if P were



36unonstrained.3.2.3 Image likelihoodThe image predition funtion � for snakes hypothesizes a urve derived from Qalong whih there is an intensity disparity. To ompute the image similarity betweenthe image and this predition, we de�ne p(I jX) by adapting the formula for \p(z jx)"as desribed in [59℄.For eah of the n segment borders omprising the B-spline parametrized by apartiular Q, edge detetion is performed along a line of length L (typially 10-20 pixels) that is normal to and biseted by the urve at that point. Let �(i) bethe image loation of the urve at segment i, where 0 � i < n. Using the Cannyalgorithm, we let z(i) be the loation of the edge segment along the ith normal thatis found nearest to �(i). For the Sobel method, z(i) is the strongest edge alongthe normal whose strength is over the threshold � . Any failure to �nd a suitableedge is noted and dealt with as desribed in Equation 3.16 below. The shape ofa nonperiodi snake and the Sobel edges deteted on its normals are illustrated inFigure 3.5(d).Assuming the state X inludes Q, we express the likelihood as:psnake(I jX) = exp (� 1�2snake n�1Xi=0 l(i) �  snake(i)) (3.15)where l(i) is the fration of the total length j�j of the snake represented by normali (e.g., N=j�j if the normals are evenly spaed). The degree to whih the loation ofeah deteted edge �ts the shape model is given by
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(a) (d)

(b) ()Figure 3.5: Snake. (a) Human head (infrared image); (b) Sobel edge detetion onhead image (� = 45; brightness at pixel (x; y) is linearly interpolated after thresh-olding between jrI(x; y)j = 0 as white and jrI(x; y)j � 255 lamped to blak); ()Canny edge detetion (� = 2:0, �̂low = 0:25, �̂high = 0:75); (d) State of a sample snakehead traker. Cirles on urve normals indiate loations of strongest Sobel edges.
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 snake(i) = 8><>: j�(i)� z(i)j if an edge is found� otherwise (3.16)� serves as a penalty value for  (i) when there is no edge deteted along the normalto the urve at segment i.3.3 AddendaA fator in the onstrution of the image likelihood that deserves srutiny is thevalue of the variane �2 for eah modality. The purpose of �2 is to ensure thatthe ranges of the funtions sig in Equation 3.1 and exp in 3.3 and 3.15 are withinmahine preision. To see the neessity of this, observe that the  term of eah ofthe modalities has a natural sale depending on its de�nition. For textured regions,the value of  tregion is a squared pixel intensity di�erene ranging from 02 = 0 to2552 = 65025. For homogeneous regions,  hregion is a Mahalanobis distane betweenpixel olors whih an range from 0 to roughly 10 depending on a region's olorde�nition. A snake's  snake is a distane in the image between a predited andmeasured edge; with the penalty term � it ranges from 0 to � (whih is usually 10-30). Appropriate modality-spei� values for �2 an be empirially derived|e.g.,by averaging the inverse of the mean  for a modality over many objet models,samples, and images|but we simply use reasonable approximations: �2tregion = 4000,�2hregion = 25, and �2snake = 400.The ellipse-�tting idea for homogeneous regions is easily adaptable to graysaleimages by arrying out one-dimensional prinipal omponents analysis (PCA) onthe sampled pixel intensities. Suh graysale images might be the output of a depth-estimating stereo algorithm [31, 70℄. In order to redue sensitivity to variations in



39illumination intensity, we may also use a similar method on the two hrominanedimensions of olor spae representations suh as Y UV [93℄. Computer graphisor syntheti image soures where a region's olor may be perfetly uniform are notamenable to statistial tehniques suh as PCA. In this ase it is straightforward tomodel olor similarity as simple Eulidean distane in olor spae.Variations on the method of �tting an ellipsoid to a olor sample inlude usingrobust methods [85℄ for dealing with outliers in the reetanes of sampled pixels(suh as the logo on the player's shirt in Figure 3.2). Instead of retangles forrepresenting shape of regions (homogeneous and textured), we might use periodiB-spline outlines for more detail. This would require a simple generalization of thenotion of the inhibitory frame for homogeneous regions.For all of the modalities disussed in this hapter, the model of the image pre-dition funtion �(X) neglets depth-dependent fous, motion blur, and other suhphotorealisti fators. Ignoring the e�ets of these phenomena has a negligible impaton the quality of traking for the image sequenes we use.



Chapter 4
Single Objet Traking
In this hapter we disuss tehniques for traking single, unoluded, atomi objets.We use the term atomi in the sense of an atom being the smallest indivisible unit,meaning that the objet is identi�ed by only one of the modalities presented in theprevious hapter. The ombination of an identifying modality and the observableparameters of that modality (size, olor, shape, et.) onstitute an attribute of anobjet.In addition to solitary objets, the methods we over an be applied to trakingmultiple objets simultaneously, but with degraded performane when similar objetsare lose to one another or the objets olude one another. Moreover, if the objetsto be traked are physially linked (e.g., parts of a human body) or are identi�ed bymultiple attributes, these methods ignore information provided by the inter-objetonstraints or extra attributes that may provide greater robustness. Expliit ap-proahes to multiple objet traking are presented in Chapter 5, and onstrainedand multi-attribute traking are investigated in Chapter 6.Referring bak to the exposition in Chapter 2, we ast the problem of visuallytraking an atomi objet as one of following the area of the image that is the40



41MeasurementGenerationti?AssoiationProbabilitiesti?StateEstimationtiFigure 4.1: State update algorithm pipeline for a single PDAF trakerbest math to it. The Kalman �lter predits the most likely loation and otherharateristis of this image area, indiating where to begin searhing for it. In the�rst setion of this hapter, we disuss methods for �nding and parametrizing a setof hypotheses for good mathes. The best math thus found is suitable for input toa standard Kalman �lter as the measurement. Later in the hapter we present theProbabilisti Data Assoiation Filter (PDAF) [5℄, an extension to the Kalman �lterthat onsiders other highly likely alternatives.4.1 The Measurement ProessThe measurement extration proess is essentially a searh for loal maxima of theimage likelihood p(I j X) in the neighborhood of bX, the state predited from the�lter at time t. The geometri harateristis of the image areas orrespondingto these maximally likely states are derived as measurements Z. There are manyapproahes to this problem, eah of whih trades o� speed for thoroughness. Perhapsthe simplest lass of tehniques, whih we all gradient asent methods, follows fromthe ondition that p(I jX) is di�erentiable. Randomized methods suh as simulated



42annealing [87℄ whih sample p(I jX) at disrete loations, sequentially or in parallel,have proven suessful at �nding global maxima of multimodal funtions and do notrequire di�erentiation in order to work. Alternatives to random sampling inludesampling over a regular grid in state spae or using a quasi-random method suh asAntonov-Saleev [94℄ to ahieve a Poisson-like distribution and thus avoid dupliationof e�ort by samples that are too lose to one another.In this hapter we use either gradient asent or random sampling methods formeasurement extration. The basis of eah approah are overed in the next twosubsetions. We have found that a hybrid of the two methods yields good results. Analgorithm for ombining these tehniques and an analysis of why suh a ombinationmay be neessary or preferable are presented in the next hapter.4.1.1 Gradient AsentCommon gradient algorithms inlude steepest asent and onjugate gradient [94℄.These methods work as follows. Let the funtion to be maximized be f(X) = p(I jX),and the starting point of the searh be p0 = Z, the urrent predited state. The aimof the gradient algorithms is to onstrut a sequene of points fpig that onvergeto a maximum of f that is loal to p0. Eah new point pi+1 is derived from itspredeessor aording to pi+1 = pi+�i gi, where gi is a diretion derived (indiretly,if using the onjugate method) from the gradient rf(pi). �i is a step size that anbe omputed from minimizing f along an interval of the line passing through piin the diretion of gi, or it may simply be onstant. The algorithm is terminatedwhen jf(pi+1)� f(pi)j � Æ for some small Æ or the number of steps taken reahes athreshold N .While onjugate gradient uses derivative information on f for eÆieny, Powell'smethod [94℄ is a related algorithm that does not. Powell's method is sometimes



43used in this dissertation, espeially for the modi�ed version of p(I jX) introduedin Chapter 5. Unless otherwise noted, though, the gradient asent tehnique used isonjugate gradient.We will now desribe some spei� methods of implementing gradient asentfor the traking modalities introdued in Chapter 3. Assuming that the obje-tive funtion f(X) an be evaluated for any partiular state, we an always ap-proximate the partial derivative of f with respet to some parameter x in X by�f�x � f(X+�x)�f(X��x)2�x , where �x is a vetor that is all 0's exept for a small num-ber �x assigned to the x parameter. The gradient an easily be onstruted fromthese approximated derivatives. For onsisteny, we use this method of gradient ap-proximation for all three modalities, although some traking modalities permit theuse of more diret gradient asent methods.For example, a method ommonly used in snake traking (introdued in [117℄and extended to the aÆne ase in [18℄) is to simply take the loations of the bestedges z(0); : : : ; z(n� 1) found along the searh normals of the predited snake, usethese to parametrize a new B-spline, and reate a measurement from this B-spline.The maximal motion that an be estimated in this manner obviously depends on thelength of the normals.The motion of textured regions an be diretly estimated by solving the imagebrightness equation Ixu+Iyv+It = 0 [51, 54℄ (Ix; Iy are the spatial image derivatives,It is the temporal image derivative, and u; v are pixel veloities within the part of theimage of interest) subjet to, for example, an aÆne onstraint [9℄. This approah anbe extended to estimate larger motions by using a multi-resolution image pyramidto iteratively move from oarse to �ne estimates [9℄.Gradient methods are often used to eÆiently obtain a single best measurementwith whih to update a traking �lter. A number of assumptions must be met to



44ensure their suessful appliation. First, gradient asent works best when p(I jX) isunimodal. The user must also hope that the objet state is hanging slowly enoughthat the �lter an keep up if the algorithm is terminated after a maximum number ofsteps (meaning that it may only get some fration of the way to the true maximumfor eah new image), or if the posterior is multimodal that the predited state will notwind up in another basin of attration. Another assumption if there is multimodalityis that there will not be signi�ant interferene between modes, suh as two modes(the orret one and an inorret one) merging and splitting, reating the possibilityof the �lter making the wrong hoie after the split.These diÆulties with gradient methods are why in many situations we favor otheralgorithms that allow for faster state hanges and multiple modalities in the stateposterior. These methods, though retaining the notion of loality around a preditedstate, shade into global optimization algorithms. We use gradient asent methodsfor measurement generation in some of the examples at the end of this hapter inorder to ompare their performane to the randomized peak �nder desribed in thenext setion.4.1.2 Random samplingFor speed and simpliity, we use a measurement generation method whih we allmeasurement sampling, adapted from the fatored sampling approah of the Conden-sation algorithm [59℄ (the Condensation algorithm is disussed in detail in Chapter 7).Intuitively, we sample p(I jX) in the neighborhood of the urrent predited state bX,selet those state samples most likely to be on its nearby peaks, and onvert themto measurements.The random sampling method of measurement generation for a given trakingmodality obtains measurements by piking points from a distribution determined by



45the prior on the state p(X), omputing their image likelihoods p(I j X), throwingaway all but the top fration, and deriving the measurement parameters of whatremains. The form of the prior p(X) an be determined by learning from examplesif desired; we use a hand-tuned Gaussian.In pratie, N samples are taken from a normal distribution in the target's statespae X entered on its urrent predited state bX. A hypothetial prior and one setof samples derived from it are diagrammed in Figures 4.2(a) and (b). N and theovariane of the distribution�X are hosen to give adequate overage to a \trakingwindow" about the target. Furthermore, sampling from the normal distributionensures that the image likelihood funtion is examined more preisely where it isexpeted to be highest. p(I jX) is omputed for eah sample by soring the degree of�t between the hypothesized target and the urrent image, as shown in Figure 4.2().Finally, a winnowing step sorts the samples by their likelihoods and keeps only the nmost likely ones (n� N) to be onverted to measurements for input to the traking�lter. This last step is illustrated in Figure 4.2(d).Several enhanements to this basi proedure are possible. First, we ould enforea minimum distane in state spae between samples to redue the hane of multiplesamples being drawn from the same underlying image feature. Also, performinggradient asent on the samples, either before or after winnowing, would improvetheir quality and onsisteny. Both of these steps are optional at this stage beauseof the PDAF's tolerane of multiple samples, but we show in the next hapter thatthey are neessary for joint traking.4.1.3 Measurement TerminologyWe use the following nomenlature to desribe state and measurement parametersubspaes for homogeneous and textured regions as well as snakes: X indiates
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(a) (b)

() (d)Figure 4.2: Measurement generation. (a) Hypothetial prior distribution; (b) Priordistribution on state with N = 500 samples; () Hypothetial image likelihood fun-tion with samples; (d) Image likelihood funtion with n = 50 best samples.



47the range of horizontal image loations of the target, Y is the range of its vertialimage loations, � is its possible image orientations in radians, and S is its possiblesales as a fration of its initial size. Thus, image loation variables in the stateare denoted by x 2 X and y 2 Y , orientations by � 2 �, and sales by s 2 S.Other possible state parameters to be estimated from these measurable quantities areveloity and aeleration. Horizontal image veloity and aeleration, for example,are indiated by _x 2 _X and �x 2 �X, respetively. In all of the examples in thisdissertation, an objet's measurement spae is simply its state spae without anytemporal parameters.Beause the state of an objet may be as simple as, for example, its image loation(x; y), we should note that the image likelihood p(I jX) is impliitly onditioned onother objet information. The olor of a homogeneous region, the referene imageof a textured region, and the ontrol points of a snake all go into the alulationof the image likelihood and yet are not expressed expliitly in the state. Moreover,what we all an objet's geometri image proessing parameters are also part of thisalulation. The geometri image proessing parameters are those that totally de�nethe shape of an objet and are thus neessary to ompute p(I jX) for their respetivemodalities. For a region, they are the position ~x; ~y, size ~w; ~h, and orientation ~� ofthe retangle, and for a snake they are the six aÆne parameters (~q0; ~q1; : : : ; ~q5) inQ. If not inluded in the state, the geometri parameters must be aounted for viasome other means.As a matter of implementation, it is useful to de�ne a formalism for referring tothese geometri parameters. This formalism, whih we all the measurement key, isalso used as a means of onstraint enforement in Chapter 6. The measurement keyK for a partiular objet modality is a vetor of funtions ki, where k : X ! R . Eahof these funtions is named after the geometri parameter it orresponds to. The



48measurement key is di�erent depending on the traker modality and state spae, butin general we de�ne Khregion(X) = Ktregion(X) � (~x(X); ~y(X); ~w(X); ~h(X); ~�(X))Tand Ksnake � (~q0(X); ~q1(X); ~q2(X); ~q3(X); ~q4(X); ~q5(X))T .We now explain the details of K using regions as an example. When state spaeX ontains X � Y �W �H � �, the funtions in K simply selet the appropriateentry of X 2 X . If, for example, X = (x; y; w; h; �)T , then ~x(X) = x, ~y(X) = y, andso on. If state spae does not ontain all of the geometri image proessing variables,though, then some are left unspei�ed by this method. Suppose X = X � Y .In this ase onstants are used for the unspei�ed parameters|spei�ally, theirinitial, user-hosen values: ~w(X) = �w, ~h(X) = �h, and ~�(X) = ��. This funtionalformulation also allows sale s (initially 1) and other quantities to be state variables.If X = X�Y �S, then ~x(X) = x, ~y(X) = y, ~w(X) = s �w, ~h(X) = s�h, and ~�(X) = ��.An analogy is easily drawn between the geometri parameters of regions and theaÆne representation of snakes. ~q0 and ~q1 are the relative translational omponentsof the aÆne parameters, and thus are equal to ~x� �̂x and ~y � �̂y, respetively (�̂xis the mean x value of the initial positions of the B-spline template points and �̂yis their mean y value). ~q2; ~q3; ~q4, and ~q5 are the rotational and saling parameters ofthe B-spline. They are oeÆients of a 2 � 2 matrix � ~q2 ~q5~q4 ~q3 � = � s os(�) � sin(�)sin(�) s os(�) � thattakes the initial shape of the B-spline to its urrent size and orientation. The snake'sangle � an thus be expressed as sin�1(~q4) and its sale s as ~q2= os(�). Heneforth,we will use the names of the geometri parameters of regions with the knowledgethat we an onvert bak and forth to the snake parameters.Although the random sampling proedure for measurement generation uses thefull state spae, as noted in the previous hapter our model of image formation doesnot urrently aount for an objet's veloity. Therefore veloity parameters in thestate never �gure in the alulation of the geometri parameters desribed above or,



49onsequently, the image likelihood p(I jX). This means that the temporal dimensionsof state samples are irrelevant to the image likelihood. In our results, we ignore themby referring to only the non-temporal dimensions of the state sampling ovariane�X . As a matter of shorthand, when state spae inludes veloity parameters suhas, for example, X � Y � _X � _Y , we desribe only the relevant part of the samplingovariane, or �X = � �2X 00 �2Y �.Homogeneous RegionsThe proess of random sampling to obtain measurements is illustrated for homoge-neous regions in Figure 4.3. The input image is the soer player from the previoushapter, and we would like to trak his orange jersey. Allowing translation, rotation,and saling of the retangle �t to the jersey, state spae is X = X � Y � �� S. InFigure 4.3(b-), there are a large number of samples N = 2000 and measurementsn = 100, with a large sampling ovariane about the predited state in order toexplore most of the image: �X = � 4000 0 0 00 4000 0 00 0 0:1 00 0 0 0:05 �. In Figure 4.3(d-e), the samplingovariane is more foused: �X = � 400 0 0 00 400 0 00 0 0:02 00 0 0 0:01 �. The number of samples N = 500and measurements n = 10 are also smaller, and as a result the player's orange soksare not found, making the measurement distribution unimodal instead of bimodal.For ertain image onditions, a fast approximation to state sampling for homo-geneous regions is o�ered by onneted omponents (CC) analysis. This proedurefollows from the observation that the moments of the largest onneted omponentsof pixels for whih (I(x; y)) is high frequently orrespond to peaks in the image like-lihood funtion p(I jX). The proess, illustrated in Figure 4.4, approximates p(I jX)whenX onsists solely of position by alulating (I(x; y)) for eah image pixel (x; y).We then threshold these likelihoods to remove everything but the tops of the peaksand perform some number E of morphologial expansion operations to join pixels
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(a)

(b) ()

(d) (e)Figure 4.3: Random sampling for homogeneous region measurement generation. (a)Predited state; (b) Samples with large ovariane (about predited state); () Mea-surements for large ovariane sample; (d) Samples with small ovariane (aboutsame predited state); (e) Measurements for small ovariane sample.
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(a) (b) ()

(d) (e)Figure 4.4: Conneted omponents for homogeneous region measurement generation.(a) Traking window; (b) Mahalanobis distane of pixels in RGB spae to skin olor;() Pixels over a threshold of olor similarity; (d) Largest onneted omponents ofskin-olored pixels (E = 2); (e) Measurements derived from onneted omponents.separated by image artifats suh as video interlaing and amera noise. Next, weompute the onneted omponents (in the eight-onneted sense) of what remains,throw away CC's whose areas fall below a threshold. Finally, a measurement is re-ated from eah remaining CC by �tting an ellipse to it with prinipal omponentsanalysis and using the major and minor axes the ellipse to de�ne a retangle.With the CC method, the surfae path being traked may projet to multipleregions if it is nonplanar, resulting in one target giving rise to multiple measurements.This is not a problem for position estimation, but it prevents aurate omputationof the target's image size and orientation. Moreover, thresholding olor similarity



52inevitably omits some worthy pixels falling just below the threshold, as with the rightside the of fae in Figure 4.4, biasing the measurement for that onneted omponent.The quality of the CC method's results is best when p(I jX) has distint peaks withompat support.A similar approah to extrating measurements by alulating the onnetedomponents of thresholded graysale images was reported by Kumar et al. [78℄.Textured RegionsThe state sampling proess for a textured region traker onstrained to translationis shown in Figure 4.5. The objet of interest is the fae of a player in a roppedphotograph of the 1926 New York Yankees baseball team. The multiple faes inthis group piture learly illustrate the potential multimodality of p(I jX) and itsimpliations for measurement generation. For simple translation of the region, statespae is X = X � Y . In Figure 4.5(b-), relatively many samples and measurements(N = 3000; n = 50) are used, plus a large sampling ovariane �X = � 1000 00 1000 �.Figure 4.5(b) shows the initial samples and 4.5() shows the measurements obtainedfrom the top fration of the samples. The results of a smaller sampling ovariane,�X = � 100 00 100 �, and fewer samples and measurements (N = 250; n = 5) are similarlydisplayed in Figure 4.5(e-f).SnakesThe steps of the sampling proess for a hess pawn-shaped snake onstrained totranslation only are illustrated in Figure 4.6. Allowing only translation of the snake,state spae is X = X � Y . In Figure 4.6(-d), a relatively large number of samplesN = 2000 and measurements n = 50 are used, as well as a large sampling ovariane�X = � 3000 00 3000 �. A tighter sampling ovariane is shown in Figure 4.6(e-f): �X =
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(a)

(b) ()

(d) (e)Figure 4.5: Random sampling for textured region measurement generation. (a)Predited state; (b) Samples with large ovariane (about predited state); () Bestsamples from large ovariane; (d) Samples with small ovariane; (e) Best samplesfrom small ovariane.
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(a) (b)

() (d)

(e) (f)Figure 4.6: Random sampling for snake measurement generation. (a) Preditedstate; (b) Canny edges in image (� = 2:0, �̂low = 0:25, �̂high = 0:75); () Sampleswith large ovariane (about predited state); (d) Measurements for large ovarianesample; (e) Samples with small ovariane; (f) Measurements for small ovarianesample.



55� 400 00 400 �. The number of samples N = 250 and measurements n = 5 are alsosmaller, eliminating the distrations of the gap between the hess player's �ngersand the other piees.4.2 Filtering MethodsKalman �ltering [5, 69℄ is an eÆient method for traking when the distribution onmeasurements is Gaussian. This �lter is an algorithm for linear estimation of a setof time-varying parameters typially alled the state X. Suppose that the evolutionof the system at time t is desribed by the dynami equation:Xt = FXt�1 + qt (4.1)where qt is a sequene of zero-mean, white, Gaussian noise with dynami ovarianeQ. The state is related to observable data Z by the measurement equation:Zt = HXt + rt (4.2)where rt is also zero-mean, white, Gaussian noise with measurement ovariane R.Using the previous (or initial) state estimate and the urrent data, the Kalman �lterarrives a new estimate for X by alulating the quantities in Table 4.1 (exept for theidentity matrix Id, every variable not subsripted by t � 1 is impliitly subsriptedby time t).A ommon modi�ation to the plain Kalman �lter to handle nonlinearities inthe dynami and measurement equations is the �rst-order Extended Kalman Filter(EKF) [5℄. A nonlinear dynami equationXt = F (Xt�1)+qt is linearized by assigningthe �rst term of the Taylor series expansion of F about Xt�1 at eah �lter update



56bX = FXt�1 Predited stateẐ = H bX Predited measurementbP = FPt�1 FT +Q State predition ovarianeS = H bPHT +R Measurement predition ovariane� = Z� Ẑ InnovationW = bPHT S�1 Filter gainX = bX+W � State estimateP = (Id�WH) bP State ovariane estimateTable 4.1: Kalman �lter equationsto the matrix F. A nonlinear measurement equation zt = H(Xt) + rt is dealt withsimilarly by expanding H about bX every �lter update to obtain H.Situations in whih there are departures from the assumption that the posterioris Gaussian require extensions to the Kalman �lter. For example, noise might tem-porarily reate multiple measurements or ause the target-originated measurement todisappear. Or we might be traking T objets as independent entities, and thus ex-pet there to be a persistent measurement for eah one. Proper target-measurementorrespondenes are maintained by ontinually omputing the assoiation probabili-ties of the various possibilities.Modi�ations to the Kalman �lter to deal with these phenomena are often alleddata assoiation methods [5℄. Suh methods are ways of rationally modeling partof the world outside of the state in order to estimate X more aurately. In theourse of visual traking, olusions, distrations, and multiple targets of interest areommon ompliations, so it seems natural to adapt data assoiation tehniques toombat them.Next, we examine an extension of the Kalman �lter to a basi data assoiation�lter, the Probabilisti Data Assoiation Filter (PDAF) [5℄. The three key steps ofa vision-based PDAF traking algorithm are shown in Figure 4.1. These are: (1)generate measurements, (2) weight them by assoiation probability, and (3) update



57the state estimate based on the weighted measurements.4.2.1 Probabilisti Data Assoiation FilterThe measurement proesses desribed above derive a group of andidate states foreah traker. The Probabilisti Data Assoiation Filter (PDAF) [5, 28℄ is an exten-sion of the Kalman �lter [5℄ that uses a Bayesian approah to the problem of dataassoiation, or how to update the state when there is a single target and possibly nomeasurements or multiple measurements due to noise.The simplest form of data assoiation is the nearest neighbor (NN) method [5, 28℄,whih piks the data losest to what is expeted in order to update the state. Withsome �nite probability, though, this hoie will be wrong, leading to biases in thestate estimate or outright mistraking. The PDAF, on the other hand, attemptsto hedge its bets by weighting the various possibilities. Weights are assigned to themeasurements based on two major assumptions. First, the PDAF assumes that thereis exatly one target, giving rise to one \true" measurement, whih may sporadiallydisappear either beause the target is temporarily oluded or beause of subop-timal feature detetion at any stage of the pipeline between the amera and (forexample) the edge detetion algorithm. Seond, the PDAF assumes that all othermeasurements are \false" and arise from a uniform noise proess.The relevant step in the Kalman �lter is the omputation of the innovation �.The PDAF introdues a notion of the ombined innovation, omputed over the nmeasurements deteted at a given time step as the weighted sum of the individualinnovations: � = Pni=1 �i� i. Eah �i is the probability of the assoiation event �ithat the ith measurement is target-originated. Also omputed is �0, the probabilityof the event that none of the measurements is target-originated (i.e., the target isassoiated with the null measurement). These events enompass all possible inter-
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z5(a) (b) ()Figure 4.7: The data assoiation problem. (a) No measurements (ellipse indiatesvalidation gate); (b) Multiple measurements; () Multiple targets.pretations of the data, so Pni=0 �i = 1. The assoiation probabilities are as followsfor a given time step:
�0 = bb +Pnj=1 ej (4.3)�i = eib +Pnj=1 ej ; i > 0 (4.4)where ei = exp(�12�Ti S�1�i) and b = '(1� PDPG)=PD. Here PG is the probabilitythat the orret measurement is in the validation gate (explained below), PD is theprobability that the measurement will be detetable if it is in the validation gate, and' is a variable dependent on the number and dimensionality of the measurements[5℄. For the traking examples throughout this dissertation we will use values ofPG = 0:99 and PD = 0:9.The validation gate is an ellipsoidal volume in measurement spae entered onẐ, the measurement predited from the urrent state estimate, and whose shape isde�ned by S, the estimated ovariane of the predited measurement, suh that theprobability of a target-originated measurement appearing outside of it is negligible.



59The size of the validation gate is set so that it ontains � � 3 standard deviations ofthe Gaussian distribution orresponding to S, making the probability of suh an eventless than or equal to 0:01. Little auray is thus lost by disregarding measurementsfalling outside the gate.Limiting image proessing to a traking window, or small retangular subimagearound the urrent target state [52℄, is a ommon approximation of a validation gateon the image spatial omponent of the state. Here we implement a validation gatethrough the sampling ovariane �X .Randomly sampling from a normal distribution and seleting the top fration ofthe samples as measurements, as we do, does not preisely satisfy the PDAF assump-tion of a uniform distribution of false measurements, but it is usually a reasonableapproximation. Multiple measurements oming from the true, target-originated peakin the image likelihood funtion p(I jX), as seen in Figure 4.3() and (e) and Fig-ure 4.6(d) and (f), are tightly lustered in one part of the validation gate ratherthan uniformly distributed throughout it. This is a harmless departure from theuniformity assumption beause the e�et of the PDAF assoiation probabilities is toaverage the ontribution of the measurements to the state estimate, and measure-ments tightly arranged around a maximum of p(I jX) average out to that maximum.Measurements from false, non-target-originated peaks in p(I jX) are a di�erentmatter. Many false peaks are truly due to noise soures suh as the atmosphere (afator that is more important outdoors and over long distanes), amera, and videoapture devie. It is also reasonable to model some dynami sene elements as noisebeause of their unpreditable movements and ability to be appear and disappear,suh as reetions o� of a rippling water surfae. However, many sene elements|other parts of a omplex objet being traked, a stati bakground, other movingobjets, et.|are too persistent to be regarded in this fashion. If peaks in p(I jX)



60orresponding to suh visual phenomena are weak ompared to the target-originatedpeak and uniformly distributed, random sampling will generate measurements fromthese peaks relatively uniformly and their inuene will be anelled out. If the falsepeaks are strong enough, though, measurements from them will be generated dispro-portionately, biasing the PDAF �lter's state estimates. We investigate tehniquesfor suessfully traking when there are multiple persistent peaks in p(I jX) in thenext hapter.As a �nal note in this disussion of the PDAF, the introdution of assoiationprobabilities alters the alulation of the error ovariane of the state estimate Pgiven in Table 4.1. For the standard Kalman �lter, P is independent of the measure-ments, but the unertainty of the state estimate with the PDAF �lter is highly depen-dent on the data. Spei�ally, P = �0 bP+(1��0)P+ eP, where P = (Id�WH) bPand eP =W �Pni=1 �i � i �Ti � � �T �WT (see [5℄ for a derivation).4.3 ResultsSome examples of PDAF traking are given below in Figures 4.8, 4.10, and 4.11 forhomogeneous regions, Figures 4.12 for snakes, and Figures 4.9 and 4.13 for texturedregions.Figure 4.8 illustrates the resistane of the PDAF to distrations due to noise. Toperfetly ontrol noise onditions, we reated a omputer graphis simulation of redirles on a blak bakground. There is one target whih moves in a ounterlokwiseelliptial orbit at a rate of 0.02 radians per frame and 50 random distrators froma uniform distribution in eah frame. The target has a state of X = (x; y) and thesame measurement parameters; it is traked with a homogeneous region traker. 100samples are hosen with a sampling ovariane of �X = � 100 00 100 �. In one series of
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(a) (b)Figure 4.8: PDAF: Traking a syntheti, irular homogeneous region with uniformnoise (CG). (a) Frame 0 with the initial position and ground truth for the entireorbit overlaid; (b) Frame 300 with a history of estimates at 25 frame intervals.experiments, only the single best sample was used as a measurement. The trakerwas able to follow the irle through a full orbit in only 5 out of 20 trials. In anotherseries of experiments, the 10 best samples were used as measurements. This trakerwas muh less vulnerable to distration, and sueeded in traking the irle througha full orbit in 17 out of 20 trials. Two representative frames from a trial of the latterseries are shown in Figure 4.8. The atual path followed by the irle is shown inFigure 4.8(a) overlaid on the initial frame, and the estimates made by the traker upto frame 300 are drawn in Figure 4.8(b) at 25 frame intervals.In Figure 4.9, a textured region traker is attahed to a mouse embryo as the mi-rosope slide is moved and the embryo is poked and rotated with a probe. The stateof the traker is simply position and orientation: X = (x; y; �), and measurementspae is Z = X � Y � �. As the �gure shows, a traker that uses gradient asent(Powell's method) alone to generate a single measurement is thrown o� when theembryo moves abruptly after frame 60. A traker that uses random sampling for mea-surement generation, on the other hand, is able to reover from these agile motions.In this ase, 5 measurements are ulled from 250 samples, where �X = � 100 0 00 100 00 0 0:04 �.



62A homogeneous region traker would be inappropriate beause of the lak of on-trasting olor in the image, and a snake traker around the ontour of the embryowould be able to estimate position but not rotation.Figure 4.10 shows a homogeneous region traker following the forearm of a personas he walks from left to right. There is not muh saling, but the motion is fairlydynami, so the state inludes the forearm's image position, orientation, and the ve-loities of these parameters: X = (x; y; �; _x; _y; _�). Eah measurement is a translationand rotation of a �xed size retangle, so Z = X � Y � �. The retangles overlaidon the �gure indiate the 10 best measurements taken from 1000 samples in thatframe, where �X = � 100 0 00 100 00 0 0:02 �. In general, the most probable measurements forma tight luster around the measurement predited from the urrent state (exeptwhere distrations indue a multimodal distribution).Another example of homogeneous region traking is shown in Figure 4.11. Herethe target is the orange front end of a rae ar approahing the amera along a bankedoval, so the state inludes image position, orientation, and sale: X = (x; y; �; s).Measurement spae is Z = X�Y ���S. The traker state at 40-frame intervals isoverlaid on the �gure. For this example there are 5 measurements and 1000 samples,and �X = � 50 0 0 00 50 0 00 0 0:01 00 0 0 0:005 �.In Figure 4.12, we trak two human heads in infrared (IR) imagery as they pri-marily translate and sale, one with a losed ontour and the other with an openurve. Ordinarily, an aÆne B-spline has six degrees of freedom, but we have foundthat shearing and independent saling of the vertial and horizontal axes are rare formany simple objet motions, so for this example the aspet ratios of the snakes areonstrained to stay onstant, resulting in three degrees of freedom. This heuristi isan approximation of what is learnable about appropriate priors on snake dynamis bymore sophistiated proedures [17, 18℄. Thus, the state of eah traker is expressed
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(a) (b)

() (d)

(e) (f)Figure 4.9: Gradient asent (GA) alone vs. random sampling (RS): traking a mouseembryo with a translating, rotating textured region (MPEG). (a) GA state in frame0; (b) RS state in frame 0; () GA frame 60; (d) RS frame 60; (e) GA frame 120; (f)RS frame 120. (Sequene ourtesy of G. Danuser).
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(a) (b)

() (d)

(e) (f)Figure 4.10: PDAF: Traking a swinging arm with a translating, rotating homo-geneous region (MPEG). (a) Region state in frame 0; (b) Region measurements inframe 0; () State in frame 17; (d) Measurements in frame 17; (e) State in frame 34;(f) Measurements in frame 34. (Sequene ourtesy of J. MaCormik).
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(a) (b)

() (d)Figure 4.11: PDAF: Traking a rae ar with a translating, saling, rotating homo-geneous region (MPEG). (a) Region state in frame 0; (b) State in frame 40; () Statein frame 80; (d) State in frame 120.



66as X = (x; y; s) and Z = X � Y � S. Eah traker selets the best 5 measurementsfrom 250 samples; �X = � 100 0 00 100 00 0 0:01 �. The good ontrast provided by the IR meansthat there are not many distrating edges, but the sequene shows the ability of thePDAF/state-sampling method of snake traking to estimate the state aurately.A saling, translating textured region traker follows a jumping motorylist inFigure 4.13. The traker state is given by X = (x; y; s), and measurement spae isZ = X � Y � S. Five measurements are taken from 1000 samples, where �X =� 25 0 00 25 00 0 0:001 �. Some biasing is introdued beause the perspetive on the motorylehanges slightly from frontal to a three-quarters view, an unmodeled transformation.
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(a) (b)

() (d)

(e) (f)Figure 4.12: PDAF: Traking two faes with translating, saling snakes (MPEG ofinfrared imagery, Canny). (a) Snake states in frame 0; (b) Snake measurements inframe 0; () States in frame 70; (d) Measurements in frame 70; (e) States in frame140; (f) Measurements in frame 140.
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(a) (b)

() (d)Figure 4.13: PDAF: Traking a motoryle with a translating, saling textured region(MPEG). (a) Region state in frame 0; (b) State in frame 30; () State in frame 60;(d) State in frame 90.



Chapter 5
Joint Traking
In the previous hapter we assumed that there are no other strong, persistent featuresin the image that have attributes similar to those of the traked target. This is afair approximation for many visual situations, but it ertainly does not hold whentraking multiple similar or idential objets or one objet with multiple similarparts. If and when the states of the individual parts beome proximate, one target-originated measurement may often fall within another target's overlapping validationgate. Suh persistent interferene, were one to simply run a separate PDAF trakeron eah part, ould lead to multiple trakers loked onto the same part. Even whenusing a pure gradient asent tehnique for traking, whih greatly redues the size ofeah traker's validation gate and hene its suseptibility to distration, two similartargets rossing paths may ause onfusion.An example of a visual situation that may lead to mistraking beause it ontainsmultiple similar features is shown in Figure 5.1. This image was aptured from avideo of two tandem kayaks being paddled alongside one another. One might wantto trak the boats as a whole, the torsos of the paddlers in them, or even the tipsof their oars. Eah of these objets an be readily haraterized by olor|the boats69



70

Figure 5.1: Ambiguity when traking multiple objets simultaneously (aptured froma Quiktime video)are red, two of the people are wearing yellow life jakets, and the blades of the oarsare bright blue|and thus would seem to be amenable to the tehniques introduedin the previous hapter. The problem is that multiple areas of the image satisfy eahof these desriptions. That is, searhing the image for an oar blade by looking fora homogeneous blue region will return multiple good andidates, or measurements.Many persistent measurements an lead to an ambiguity of assoiation, often makinga PDAF traker peel o� of the orret image feature and attah itself to a nearbyfeature that is similar but inorret.This phenomenon ours beause PDAF state estimation is essentially solving aweighted least squares problem, where the assoiation probabilities are the weightsand the measurements are the data. Two or more measurements that persist inthe traker's validation gate will drive its state to a position that minimizes thedistane between the predited measurement and the observed ones. Beause ofthe randomness of the state dynamis and noise (i.e., whether the measurements areonsistently refound from frame to frame), when image onditions again produe onepersistent measurement in the validation gate, the traker may have slipped onto anon-target feature. In partiular, if there are multiple orretly-initialized PDAF



71trakers looking (for example) for blue regions, beause of their ignorane of eahother they might eventually all lump onto the same oar blade and erroneously ignorethe others.This hapter reviews methods for dealing with this lass of problems by sharinginformation between trakers. If we are traking all of the image features that maymutually ause distration, it seems reasonable to surmise that adding an overarh-ing layer of reasoning may help ensure that the trakers are eÆiently and orretlydistributed over the measurements. One suh tehnique that we disuss is an ex-isting extension to the PDAF alled the Joint Probabilisti Data Assoiation Filter(JPDAF) [5℄. The JPDAF often mitigates problems of persistent distration thatour when traking multiple objets. The �rst part of the hapter investigates theissues involved in adapting the JPDAF to vision; one limitation is that it an onlybe used for groups of objets of the same modality. In the seond half of the hapterwe introdue a new approah alled the Joint Likelihood Filter (JLF). This methodaptures the rux of the JPDAF but is readily appliable to mixtures of di�erenttraking modalities, is more eÆient than the JPDAF, and inorporates expliit rea-soning about olusion relationships between objets.5.1 Joint Probabilisti Data Assoiation FilterThe Joint Probabilisti Data assoiation Filter (JPDAF) [5℄ deals with the problem ofinterferene between multiple trakers by sharing information among separate PDAF�lters in order to more aurately alulate assoiation probabilities. This jointalulation of assoiation probabilities for multiple objets is illustrated in Figure 5.2.The essential e�et of the JPDAF is an exlusion priniple of sorts that prevents twoor more trakers from lathing onto the same target.
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MeasurementGenerationt1? MeasurementGenerationtT?Assoiation Probabilitiest1; : : : ; tT?StateEstimationt1 ?StateEstimationtTFigure 5.2: JPDAF pipelineSuppose that we are traking T objets, for whih a total of n measurementshave been generated from the urrent image. These measurements may be generatedindependently for eah traked objet as in the previous hapter, but this leads todiÆulties as we will see below. Methods for deriving measurements for all objetsjointly are presented in Setion 5.1.1. For simpliity, we assume for the momentthat every target is being traked using the same traking modality (in the sense ofChapter 3). This means that every traker shares the same image likelihood funtionp(I jX). If this is not the ase|if targets have di�erent modalities|then the JPDAFis not appliable. An alternative method that aommodates di�erent modalities isdisussed in the next setion.A key notion in the JPDAF is that of a joint event �, or onjuntion of assoi-ation events �jtj . The subsript tj has been added to the de�nition of assoiationevent introdued in the last hapter in order to indiate the index of the target towhih measurement j is mathed. For the PDAF there was only one target, mak-ing this unneessary. A partiular joint event is thus de�ned over T targets andn measurements as � = Vnj=1�jtj . The event �j0 indiates that measurement j



73is assoiated with no target|that is, it is assumed to be due to noise|while �0tamounts to a hypothesis that target t is oluded or simply undeteted.A useful onept to onsider at this point is that of a feasible joint event [5℄.The probability of a given joint event � depends, as with the PDAF, on the dis-tanes between eah target's predited measurement and the atual measurement itis assoiated with in �, as well as the assoiated measurements' image likelihoods.Thus, one ondition for �'s feasibility is that for every assoiation �jtj in �, mea-surement j is in the validation gate of target tj. However, an additional inueneon the probability of � stems from the interation of the various assoiation eventsin �. Suppose that a single, uni�ed measurement proess generates at most onemeasurement for eah peak in the image likelihood funtion p(I jX) and that eahtarget indues at most one peak in p(I jX). Aording to these onditions, two kindsof ombinations of assoiations are logially inompatible or infeasible. In the �rstase, a joint event � ontains two assoiations �jt1 ;�jt2 suh that t1 6= t2 and j 6= 0,implying that two di�erent targets are responsible for the same measurement. Thisis a ontradition. In the seond ase, � inludes assoiations �iti ;�jtj suh thati 6= j but ti = tj. This amounts to an interpretation that a single target has spawnedmultiple measurements|also an impossibility.Infeasible joint events thus have zero probability and an be disregarded. A jointevent is feasible only when eah target is assoiated with one or no measurements andeah measurement is assoiated with one or no targets. To denote these onstraintsmathematially, we �rst de�ne a measurement assoiation indiator � and targetdetetion indiator Æ [5℄. �j is de�ned to be the number of targets assoiated withmeasurement j (�j = 0 indiates a hypothesis that the measurement is due to noise),while Æt is the number of measurements mathed to target t. A joint event is thusfeasible when �j � 1 for all measurements j and Æt � 1 for all targets t. The proess



74of generating all feasible joint events for an example set of targets and measurementsis illustrated in Figure 5.3.Without some form of the preeding feasibility logi in the state estimationpipeline, it is possible for nearby targets t1 and t2 to onsistently be assoiatedwith one measurement whih properly belongs to t1. Over time, suh a onditionwill lead to their states inappropriately onverging, and t2 will have lost trak of itsorret measurement.Our assertion that eah objet auses a single peak in p(I jX) (or none if it isfully oluded) is not always stritly true. Reetive surfaes around a target anause multiple opies to be pereived by the viewer; sharp shadows ast by the tar-get an projet slightly-transformed opies of its silhouette nearby. We assume thatthese imaging phenomena an be negleted as improbable for the bulk of visual sit-uations. Also, the ondition that a single measurement be reated for eah peak isnot automatially met. Using random sampling alone, the method of measurementgeneration desribed in the previous hapter typially extrats multiple measure-ments not attributable to noise for eah target, violating one of the presumptionsof the JPDAF. Even if this problem is remedied by simply limiting the number ofmeasurements reated by eah traker to 1, eah of these measurements may still bederived from the same image feature. As we will see, gradient asent in fat beomesa neessary ingredient in the measurement proess for the JPDAF. In setion 5.1.1we address these issues by introduing a single, joint measurement proess over alltargets that apportions measurements rationally.For now, though, we assume that the pool of n measurements derived from the Ttargets ontains no more than T measurements that are due to a target-derived imagefeature as opposed to noise, and that all of the target-derived measurements are dueto unique targets instead of the same one. Next we will desribe how the JPDAF
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ẑ2

z4

Θ10

(b) () (d) (e)
ẑ1
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(j) (k) (l) (m)Figure 5.3: Joint events. (a) Targets and measurements; (b-m) Joint events gener-ated. Joint event�5 in (g) is infeasible. Any joint event inluding an assoiation �jtjfor whih measurement j is outside tj's validation gate is automatially disregardedand thus not inluded in the enumeration.



76modi�es the assoiation probabilities omputed for eah traker from the standardestablished for the PDAF in order to aount for the additional information availablefrom the other trakers.Let !jt(�) = 1 if �jt � � and 0 otherwise. From [5℄, the probability of assoi-ation between measurement j and target t given measurements Z1; : : : ;Zn is givenby �jt =P� P (� jZ1; : : : ;Zn)!jt(�), where:P (� jZ1; : : : ;Zn) = � nYj=1[Nj℄�j TYt=1(P tD)Æt(1� P tD)1�Æt (5.1)where � ontains terms for normalization and saling, and Nj is the Gaussian prob-ability density N [Zj ; Ẑtj ;Stj ℄ for measurement j. Here Zj is the measurement value,Ẑtj is the predited measurement value for target tj, and Stj is the assoiated inno-vation ovariane.The above formula gives an estimate of the probability of eah partiular target-measurement assoiation. However, for a given traker t we annot diretly employthe set of JPDAF-omputed assoiation probabilities �jt in the same manner thatthe assoiation probabilities �j would be used for the PDAF. This is beause thePDAF linearly ombines innovations, in e�et averaging the ontributions of themeasurements in order to update the state. When, as with the PDAF, there is onlyone persistent, target-derived measurement plus some noise, the noise will anel outover time beause of its transient nature (if it is not too severe). If there are multiplepersistent measurements, though, as with the JPDAF, averaging their ontributionsan lead to a state estimate suh that the predited measurement is the average ofthe persistent measurements (depending on the proximity of the measurements tothe predited measurement and the value of the measurement ovariane R). Inother words, by preventing multiple trakers from lumping onto one feature the



77JPDAF ould ause them to all ongregate around some hypothetial mean feature.This fat does not appear to have been noted in [5℄.In order to avoid this phenomenon we reset the probability of one speial assoi-ation event to unity and the rest to zero for eah target, and then update exatly aswith the PDAF. This prevents any unwarranted ombination of innovations. Howshall the the favored assoiation be seleted for eah traker t? It is tempting togreedily hoose the most likely assoiation for eah traker t|the assoiation event�jt suh that �jt � �it for all i 6= j. This does not work, however, beause ofthe possibility that the two targets t1 and t2 will be infeasibly assoiated with thesame measurement|i.e., �j1t1 and �j2t2 are piked, but j1 = j2. (This happensimmediately, for example, when there is one measurement Z1 equidistant from thepredited measurements Ẑ1 and Ẑ2 and the initial �lter parameters as enumeratedin Table 4.1 are idential for the two trakers). Instead, we use those assoiations ofthe most probable joint event �̂ whih are not of the form �j0. These assoiationevents represent the most probable mutually feasible set available.5.1.1 JPDAF Measurement GenerationOne desirable harateristi of any approah to joint measurement generation is thatonly one measurement be reated for eah peak in p(I j X). Consistently �ndingmultiple measurements within the same basin of attration for a loal maximumviolates a key assumption of the JPDAF and an lead to multiple targets beomingassoiated with that peak by irumventing the JPDAF's feasibility onstraint. O-asional deviations from the one measurement per peak ideal are aeptable but themethod of the previous hapter, whih results in a �xed number of measurements nfor eah target (typially, n > 1), must learly be modi�ed.The joint method we use for T targets is based on the random sampling tehnique



78presented in the previous hapter. First, Nj samples Zi are randomly generated foreah traker around Ẑj, target tj's predited measurement. Based on their measure-ment image likelihoods p(I jZi), some fration of the less-likely samples is eliminatedfrom further onsideration.In the seond step, eah remaining sample Zi serves as the starting point forgradient asent to a loal maximum of the measurement image likelihood funtionp(I jX). We use the onjugate gradient algorithm [94℄ for hill-limbing, where thegradient of p(I jX) is estimated numerially as desribed in the previous hapter.The result of this step for eah sample is Z0i.The purpose of the hill-limbing step is twofold. First, the resulting samples Z0iare, as a whole, better and less noisy (in the sense that they are more onsistentfrom frame to frame) andidates for state estimation. Seond, states that are on theslopes of the same peak of p(I jX) but somewhat separated by the randomness ofthe sampling proess tend to onverge in state spae X as they asend (providedertain loal onditions on p(I jX) hold). If this is true, we an dedue that aggre-gations of samples after hill-limbing will be relatively tightly lustered around loalmaxima. Sine the JPDAF relies on the measurement proess to generate only onemeasurement per peak on average, we an hoose the best sample in eah luster asrepresentative of a peak.The third step is therefore to try to hoose one exemplar for eah group of samples.This is done by enforing a minimum separation between samples in X . First, thehill-limbed samples are sorted by �tness. Starting with the most �t sample Xbest,all less �t samples Xi suh that jXbest�Xij � � are eliminated. In pratie, we usea di�erent threshold �k for eah parameter of the joint measurement and eliminatesamples whih are too lose along any dimension. Unless otherwise noted, we use�X = �Y = 10 pixels, �� = 0:1 radians, and �S = 0:01. The purpose of � is to



79attempt to ompensate for any lak of preision in the hill-limbing algorithm andto ignore maxima whose basins of attration are too small.The thinning proess is repeated for the next most �t sample still remaining, andso on until the least �t sample left is reahed. This is essentially a lustering proess,but we do not need a general lustering algorithm beause of the assumption thatthe gradient asent step has brought the members of eah luster suÆiently losetogether. This proess yields a variable number of measurements n generally equalto the number of traked objets T . The value of n an vary due to the randomnessof the sampling proedure and the degree to whih the ondition that the image onlyhas T target-like features holds.This method is applied in Figure 5.4 to the hypothetial posterior distributionand the Yankees piture from the previous hapter. Compare Figure 5.4(a) to Fig-ure 4.2(d) and Figures 5.4(b) and () to Figures 4.5() and (e), respetively.5.1.2 Algorithmi ComplexityFor a large number of targets, the JPDAF an beome ombinatorially problemati.This is beause the number of joint events � whih must be onsidered for eah �lterupdate is the following exponential funtion of the number of validated measurementsn and targets T : F (n; T ) = 1 + min(n;T )Xi=1 �ni� i�1Yj=0(T � j) (5.2)Example values of F for some di�erent n and T are shown in Table 5.1.Suh omplexity an often be avoided by partitioning the target set into groupsof targets with overlapping validation gates and running independent JPDAFs oneah one [28℄.
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(a)

(b) ()Figure 5.4: Gradient asent and minimum separation. (a) Best samples for hy-pothetial posterior distribution after gradient asent with Powell's method. Eahmaximum has multiple samples in almost the same loation, so the minimum separa-tion proedure results in 3 measurements; (b) Measurements resulting from gradientasent and minimum separation on best samples of large ovariane; () Measurementfor small ovariane.



81nnT 1 2 3 4 5 60 1 1 1 1 1 11 2 3 4 5 6 72 3 7 13 21 31 433 4 13 34 73 136 2294 5 21 73 209 501 10455 6 31 136 501 1546 40516 7 43 229 1045 4051 13327Table 5.1: Number of joint events as a funtion of the number of measurements nand targets T .5.2 Joint Likelihood FilterThe JPDAF, though a useful advane over the PDAF, laks ertain desirable prop-erties. First and foremost among these is its inappliability to mixtures of di�erentkinds of trakers. This limitation stems from the JPDAF's requirement that everytraker have the same image likelihood p(I j X), meaning that a andidate imagefeature for one traker an be plausibly assoiated with any other. The joint target-measurement assoiation stage in whih measurements are pooled between trakersis only meaningful if suh a stipulation is met. Thus, when traking one objet witha snake and another with a homogeneous region, for example, the JPDAF mustbe replaed by two independent PDAF trakers beause there is no informationsharing between modalities. Furthermore, tasks that involve the traking of mul-tiple di�erently-olored homogeneous regions, di�erent-appearing textured regions,or di�erently-shaped snakes also require PDAF-based traking. This is beause dis-similar olor models (�;T), referene images IR, or predited edge loations �(i)between trakers of the same modality also engender di�erent image likelihoods,leading to the same problem.The JPDAF has another pratial shortoming. A key requirement whih wehave tried to address above is its expetation that T measurements are generated for



82T traked objets. Although our measurement proess, whih ombines random sam-pling, gradient asent, and minimum separation, works well in most irumstanesto ensure this, it an enounter diÆulties when some of the targets overlap one an-other. The primary reason is the JPDAF's assumption that the image likelihoods ofmultiple objets are independent when they atually are not. We an see this by ex-amining the analog of Equation 2.2 for multiple objet states (assuming onditioningon previous images):p(X1; : : : ;XT jI) = kp(I jX1; : : : ;XT )p(X1; : : : ;XT ) (5.3)The last term on the right hand side of this equation, whih we shall all thejoint state prior, is essentially embodied in the JPDAF by the joint feasibilitylogi in Equation 5.1. However, thus far we have assumed that the �rst term onthe right hand side, whih we all the joint image likelihood, an be fatored asp(I jX1; : : : ;XT ) = p(I jX1) � � � p(I jXT ). Evaluating image likelihoods independentlyand taking their produt as the joint event's image likelihood is an approximation.This approximation tends to break down when targets are very lose or overlappingbeause this is exatly when their appearanes beome dependent on one another.When objet A oludes or abuts objet B, it a�ets our expetations about the ap-pearane of objet B and at least part of the immediate bakground of both objets.The best ase outome of ignoring this e�et is that noise in the state estimate aninrease, but at worst a systemati bias an be introdued in the position, angle, orsale estimate that leads to mistraking when the overlap ends. In order to trakobjets most aurately, it is neessary to evaluate their image likelihoods jointly.In order to fator p(I jX1; : : : ;XT ) properly, we need a depth ordering, relative tothe amera, of the traked objets. Knowing whih objet is in front of whih when



83they overlap is the key to properly prediting the image's appearane �(X1; : : : ;XT )from the objets jointly. When traking non-planar objets, it is possible that twoobjets will be shaped and positioned in suh a way that they are mutually olusive.We neglet this on�guration as highly unlikely for the types of objets that we trak,and let the relative depth D of some representative point on the objet suÆe forthat of the whole. Suh a relative depth an be onstruted straightforwardly froman objet's state if it inludes a numerial depth estimate. Otherwise, we an eitherassume a �xed ordering of the objets being traked, if warranted, or attempt todedue the ordering from the image.The joint image likelihood e�etively funtions as the joint event probability inEquation 5.1 sine it enodes a measurement assoiation (as well as the likelihood ofthat measurement) for every target. By sampling the prior in state spae for eahtraker we an build up a joint measurement ZJ and diretly assess its likelihoodwithout inurring the ombinatorial penalty assoiated with the JPDAF. Repeatingthis joint sampling step yields a pool of joint samples. For feasibility reasons identialto those outlined above, only the most likely joint sample an be used as a jointmeasurement to update the traker states. We all the proess that results fromthese hanges the Joint Likelihood Filter (JLF). This details of this proess arepresented in the next two setions.As a �nal note, we should be areful to distinguish a situation in whih T di�erentobjets are to be traked separately (possibly with an assortment of modalities)from one where a single objet will be traked with T di�erent modalities|e.g.,a person's head is traked by a snake for its silhouette and a homogeneous regionfor its skin olor. In this hapter we address only the former ase. The latterase implies a physial linkage between the T putative \objets" in the sense thatthey are distint attributes of the same underlying objet. Consequently, there is a
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Measurement Generationt1; : : : ; tT?AssoiationProbabilitiest1 ?AssoiationProbabilitiestT?StateEstimationt1 ?StateEstimationtTFigure 5.5: Joint Likelihood Filter pipelinedependent relationship between the objets' states, and the joint state prior is notdeomposable: p(X1; : : : ;XT ) 6= p(X1) � � �p(XT ). Constraints between objets areovered in Chapter 6.Of ourse, the state priors are not truly independent anyway beause solid objetsannot oupy the same point in spae. Nonetheless, we assert that the approxima-tion is lose enough to be valid.5.2.1 Joint Measurement ProessThe JLF replaes the independent measurement generation proesses for eah trakerwith a joint measurement proess, diagrammed in Figure 5.5.The �rst step in the measurement proess is to generate n joint samples. A givenjoint sample XJi , 1 � i � n, is built from T omponent samples Xj, 1 � j � T ,eah generated by one of the trakers in its state spae Xj. The omponent samplingproess is the same as that used by PDAF and JPDAF trakers: a sample is generatedeither randomly from the distribution de�ned by the predited state bXj and samplingovariane �Xj , or nonrandomly (when, for example, pure gradient asent is being



85used). No gradient asent is yet performed, however. The omponent samples arethen staked to get a joint sample: XJi = (X1; : : : ;XT )T , so X J = X1 � : : : � XT .Component measurements an be derived from omponent state samples via Zj =H(Xj). Assoiations, in the JPDAF sense, are impliit: target j is assoiated withomponent sample Zj.An example of a joint sample omprising a textured region and a snake is shownin Figure 5.6(a). The textured region is traking a hess pawn and the snake istraking a knight.The seond step for eah joint sample is to pik the most likely depth orderingof the T omponent samples in it. If we are assuming a �xed ordering or the atualdepth of eah objet an be derived from state information, this is a onstant-timeoperation and the algorithm proeeds to step three. Otherwise, we attempt to deduethe ordering in a prinipled way. To do this, all permutations of depth orderings areenumerated, tagging eah omponent sample with a depth order index in the proess.For example, if three objets t1; t2; t3 are being traked, we hypothesize the follow-ing set of orderings: f(t1; t2; t3); (t1; t3; t2); (t2; t1; t3); (t2; t3; t1); (t3; t1; t2); (t3; t2; t1)g,where (ti; tj; tk) indiates that D(ti) � D(tj) � D(tk). Di�erent depth orderingsof non-overlapping omponent samples are visually equivalent, induing equivalenelasses of depth orderings, so we automatially eliminate all but one representativeof eah lass. If none of the omponent samples of a joint sample overlap, there isonly one suh lass and thus only one depth ordering must be examined. In theworst ase, eah sample overlaps every other sample and all T ! permutations mustbe examined, but this ourrene beomes very unlikely for large T .Sine there are two overlapping omponent samples in the joint sample of thehess example referred to above, there are two depth ordering hypotheses. Hypothe-ses orresponding to the pawn being in front of the knight and the knight being in



86front of the pawn are represented in Figure 5.6(b) and (e), respetively. For illustra-tive purposes, nearer objets are drawn brightly and distant objets more darkly.Let DXJi = fd1; : : : ;dKXJi g be the set of visually distint depth order permuta-tions of joint sample XJi . From above, we have that 1 � KXJi � T !. Two options atthis point are: (1) Perform gradient asent on the joint sample for eah di (a jointimage likelihood objetive funtion is desribed in the next setion) before hoosingthe most likely ordering, or (2) Only do gradient asent on the most likely order-ing. The latter hoie is at least as eÆient in all situations as the former, oftenmuh more so, and empirially works quite well, so we have adopted it for all of theexamples unless otherwise noted.The third and �nal step of the joint measurement proess is to selet the mostprobable of all of the joint samples XJi and onvert it to a joint measurement ZJ .The omponent measurements Z1; : : : ;ZT of ZJ are then plugged into Kalman �ltersfor their assoiated trakers. Only one measurement is used for state estimationfor the same reason outlined in the JPDAF setion: linear ombinations of jointmeasurements (the analog of the JPDAF joint event) an result in inorret imageinterpretations.The depth ordering of the joint state is derived diretly from the depth orderingof the joint measurement. Two onsequenes of this hoie are that objets anhange their depth ordering from frame to frame (i.e., there is no model of solidity)and that the joint traker may assert that one objet oludes another when theirstates are only very lose to interseting.5.2.2 Joint Image LikelihoodTo evaluate the likelihood of a partiular joint sample XJ and its depth orderingDXJ , the probabilities of its omponent samples need to be omputed jointly. A



87key di�erene between this operation and the independent approah of the PDAFand JPDAF is our ability to predit olusions between objets. When one objet ishypothesized to be in front of another, our expetations about the oluded objet'sappearane hange. Trakers of snakes will not expet edges to be found where theyare bloked from view, homogeneous region trakers will not expet oluded pixelsto �t the olor model, and textured region trakers will not expet oluded pixelsin the omparison image to math the orresponding pixels in the referene image.Spei�ally, DXJ allows us to mask [76, 98℄ oluded portions of objets suh thatthe oluding objets take preedene in the formation of a jointly predited image�(X1; : : : ;XT ). Those pixels whih are predited to be obstruted are ignored andthose predited to be visible are mathed normally.The masking proedure indued by DXJ is fairly simple. Its output is a binarymask Mj for eah target tj that is the size of the image I. Mj(x; y) = 1 indiatesthat the image pixel I(x; y) omes from target tj (i.e., tj is visible at that pixel)and Mj(x; y) = 0 indiates that the pixel belongs to either another objet or thebakground. We are assuming that objets are ompletely opaque and that theresolution of the imaging devie is high enough to neglet the e�et of multipleobjets ontributing to individual pixels.Iterating over the jointly-traked objets from losest to farthest away, Mj isonstruted for eah objet by setting every pixel (x; y) in the objet's interior to 1provided thatMi(x; y) = 0 for all objets ti for whih D(ti) < D(tj). The interiors ofregions are simple retangles, but the frames of homogeneous regions are not maskedbeause they represent expetations about the bakground. The interiors of periodi(losed) snakes are de�ned by their B-splines, and the interiors of nonperiodi snakesare ompleted by onneting their endpoints. The latter method assumes that theonneting line will not ross any segment of the spline itself.
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(a)
(b) () (d)
(e) (f) (g)

(h) (i) (j)Figure 5.6: Joint Likelihood Filter: Hypothesizing depth orderings. (a) Joint mea-surement; (b) 1st depth ordering; () 1st knight mask; (d) 1st pawn mask; (e) 2nddepth ordering; (f) 2nd knight mask; (g) 2nd pawn mask; (h) Pawn referene image;(i) 1st pawn omparison image; (j) 2nd pawn omparison image.



89Mknight is shown for the two depth ordering hypotheses of the hess example inFigure 5.6() and (f). Mpawn is shown for those two hypotheses in Figure 5.6(d) and(g). Note the alteration in shape of the mask when an objet is partially oluded.A basi tehnique behind the formulation of the independent image likelihoodsfor the various modalities, as set out in Chapter 3, is to ompute a mean mathvalue  over the extent or around the perimeter of the objet. This mean mathis transformed into a likelihood by an exponential or sigmoidal funtion that takesbetter mean mathes loser to 1 and worse ones loser to 0. For homogeneous regions,the sum of the distanes between every pixel and the olor model is alulated, thendivided by the area of the region's retangle (with some additional ompliationsinvolving the inhibitory frame). Virtually the same operation is arried out fortextured regions (with a di�erent model for eah pixel and no inhibitory frame). Forsnakes the sum of the distanes between the predited loations and the edges foundalong the normals is divided by the number of normals.Under the JLF, the set of masks fMjg is used to modify this tehnique for tworeasons. First, some pixels are erroneously ounted more than one by the PDAF andJPDAF when traked objets overlap; eah pixel should only be used as evidene byone traker. Seond, the masks are used to try to ensure that eah pixel is ountedby the orret traker. An approah that meets these riteria only ounts targetpixels that are predited to be visible in the alulation of that target's mean mathvalue.For a textured region tj, this means that only those interior pixels (x; y) for whihMj(x; y) = 1 ontribute to the mean math value. That is, portions of the region'sinterior that are not visible do not have a math value omputed and are subtratedfrom the e�etive area. This method is illustrated for the textured-region pawn ofthe hess example in Figures 5.6(h),(i), and (j). Figure 5.6(h) shows the referene
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(a) (b)Figure 5.7: Joint Likelihood Filter: Depth-independent objet interations. (a)Nearby snake oludes expeted bakground (frame) of homogeneous region; (b)Nearby region limits edge detetion along normals of snake.image for the pawn. Figure 5.6(i) shows the omparison image for the hypothesisthat the pawn is in front of the knight and Figure 5.6(j) shows the omparison imagefor the opposite hypothesis. In the latter ase, the nearer knight masks out the areaof pixels shown in blue.Homogeneous regions are slightly more subtle. The entral area is handled inthe same fashion as textured regions, but the inhibitory frame is not in the maskMj of the traker. Rather, only those pixels (x; y) in the inhibitory frame for whihMi(x; y) = 0 for all i 6= j are ounted. The same method is also used for snakes: onlyedges found at loations (x; y) suh that Mi(x; y) = 0 for all i 6= j are onsidered.This pixel exlusion is shown in Figure 5.7(a) and (b) for homogeneous regions andsnakes, respetively.Finally, any pixels in the interior, frame, or on the normals of an objet that arealso outside of the image are treated as masked out.The mehanis of masking, though important, are only part of a proper joint for-mulation of the image likelihood. Without an additional proessing step, a di�erent



91form of the state ollapse that joint methods are intended to eliminate is possible.Consider a traking task involving two textured regions. Joint measurements forwhih the omponent measurements overlap will result in one of the regions havingsome fration f of its area masked out. As f ! 1, the image likelihood for thatomponent will be based on fewer and fewer pixels. Suppose that for some largef the visible portion of the region perfetly mathes the orresponding part of thereferene image. The mean math for suh a omponent measurement will be thesame as if the entire region were visible and perfetly mathed to the referene image.The latter senario is muh less probable than the former, so one they go into alarge or total olusion on�guration the trakers are unlikely to separate.Suh \stikiness" an our even if the two textured regions are subsequently bothompletely visible. Sine we are assuming that the number of objets is known, if twoimage features math the targets then the trakers should know that there annotbe a opy hiding somewhere else. Clearly, we need a heuristi that favors imageinterpretations ontaining more visible objets over those with fewer visible ones, allelse being equal. Not dividing by the area (i.e., going from the mean math to thetotal math) would solve this problem, but normalization by the area is neessary toeliminate a bias toward smaller measurements.Sine they represent a lak of information, masked pixels should not ount for oragainst a partiular hypothesis, whereas the above formulation tends to inrease thelikelihood of a masked hypothesis. This intuition an be implemented by lassifyingvisible pixels as either positive or negative evidene for the hypothesis that the targetis in a ertain state, and putting masked pixels in a third, neutral ategory ratherthan ignoring them. What makes a pixel a math, or positive evidene instead ofnegative, varies between modalities, but fundamentally it is a threshold � in  . Toquantify this approah, mathing pixels will be assigned a value of 1, non-mathing



92pixels will be assigned a value of �1, and masked pixels will get 0. Measurementswith more total evidene in their favor are assigned a higher likelihood than thosewith no or negative evidene by using the sigmoid funtion sig (x) = 11+e�x on thesum of the pixel math values.Spei�ally, we replae the independent image likelihoods p(I j X) for homo-geneous regions, textured regions, and snakes from Chapter 3 with the followingomponent image likelihoods pJ(I jXj):Textured regionpJtregion(I jXj) = sig ( Xx;y2IR a(x; y) �  Jtregion(x; y)) (5.4)where
 Jtregion(x; y) = 8>>>><>>>>: 1 if Mj(x; y) = 1 ^ (IR(x; y)� IC(x; y))2 � �tregion�1 if Mj(x; y) = 1 ^ (IR(x; y)� IC(x; y))2 > �tregion0 otherwise (5.5)

Homogeneous regionReall that C is the interior of the homogeneous region and F is its inhibitory frame.pJhregion(I jXj) = sig ( Xx;y2C[F a(x; y) �  Jhregion(x; y)) (5.6)where
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 Jhregion(x; y) =

8>>>>>>>>>>>><>>>>>>>>>>>>:
1 if Mj(x; y) = 1 ^ (x; y) 2 C ^ (I(x; y);T) � �hregion _Mi(x; y) = 0 8 i 6= j ^ (x; y) 2 F ^ (I(x; y);T) > �hregion�1 if Mj(x; y) = 1 ^ (x; y) 2 C ^ (I(x; y);T) > �hregion _Mi(x; y) = 0 8 i 6= j ^ (x; y) 2 F ^ (I(x; y);T) � �hregion0 otherwise (5.7)SnakeLet zx(k); zy(k) be the x and y image oordinates, respetively, of the best edge (ifany) found along normal k. We have:pJsnake(I jXj) = sig (n�1Xk=0 l(k) �  Jsnake(k)) (5.8)where

 Jsnake(k) = 8>>>>>>>><>>>>>>>>:
1 ifMi(zx(k); zy(k)) = 0 8 i 6= j ^ j�(k)� z(k)j � �snake�1 if Mi(zx(k); zy(k)) = 0 8 i 6= j ^ j�(k)� z(k)j > �snake_ edge not found0 otherwise (5.9)For the Joint Likelihood Filter, it is not neessary to hoose appropriate values of�2 to weight eah modality's ontribution to ahieve a normalized \ommon" sale.This is beause the value of  J for eah modality has the same range of [�1; 1℄. Aommon range for  J is ahieved through a di�erent sale fator: the threshold �.The results in this dissertation, unless otherwise noted, use the values �tregion = 30,



94�hregion = 3, and �snake = L=2, where L is the length of one of the snake's edge-searhnormals.Let the joint traker, whih has T omponent trakers, onsist of a set H ofhomogeneous region trakers, a set T of textured region trakers, and a set S ofsnake trakers suh that T = jHj+ jT j+ jSj. With the omponent image likelihoodsde�ned as above, the image likelihood of the joint sampleXJ is simply their produt:
pJ(I jXJ) = Ytj2H pJhregion(I jXj) Ytj2T pJtregion(I jXj)Ytj2S pJsnake(I jXj) (5.10)It is straightforward to perform gradient asent on the joint image likelihood toimprove the omponent samples. Note that gradient asent does not hange thedepth ordering of the omponent samples, however. We have also observed betterresults using Powell's method [94℄ rather the onjugate gradient method for the jointimage likelihood, possibly beause of the e�et on its di�erentiability introdued bythe nonlinear math lassi�ation step.5.3 ResultsFigure 5.8 illustrates the superiority of the JPDAF over the PDAF for trakingmultiple objets in lose proximity. In this example, �ve airplanes ying in formationare traked using textured regions. The planes sale slightly, but their primarymotion is translational and rotational, so the state of eah traker is expressed asX = (x; y; �; _x; _y), making measurement spae Z = X � Y ��. For both the PDAFand JPDAF examples, eah traker selets the best 3 of 100 samples, where the statesampling ovariane is �X = � 50 0 00 50 00 0 0:01 �. Eah of these samples is then improved



95using Powell's method for gradient asent on the image likelihood funtion p(I jX).For the PDAF, eah traker's set of hill-limbed samples is thinned independentlyby enforing a minimum separation of 10 pixels horizontally and vertially, and 0.1radians. The resulting samples beome the measurements for eah traker. TheJPDAF reates a ombined pool of measurements by thinning the union of the twosets of hill-limbed samples using the same minimum separation.The image likelihood funtion has a peak for eah of the �ve planes, and theindependent sampling and hill-limbing done by the PDAF trakers results in muhinstability. From frame to frame, eah traker may hoose the orret peak as itsmeasurement or wind up with the one to the left or right. This engenders muh noisein the state estimation at best, but when the wrong peak is onsistently used as themeasurement, a traker an be pulled o� of the right plane. This phenomenon isillustrated in the �gure from frame 0 to frame 20. The JPDAF avoids suh eventu-alities by rejeting two trakers laiming the same measurement as infeasible. Themistraking of the far right plane by the PDAF at the end of the sequene is due tothe diÆulty of mathing at the edge of the image. The JPDAF most likely traksthis plane suessfully beause even if the rightmost traker does not �nd its peak,the traker to its immediate left does, adding the measurement to the shared pool.This e�etively inreases the number of samples examined by eah traker.Figure 5.9 demonstrates the eÆay of the JPDAF vs. the PDAF for traking thefaes of two people in pro�le as they walk toward and then past one another. Usingtranslating homogeneous regions with idential dimensions and the same skin olormodel, the state of eah traker is expressed as X = (x; y; _x; _y), making measurementspae Z = X�Y . For both the PDAF and JPDAF examples, eah traker selets thebest 10 of 50 samples, where the state sampling ovariane is �X = � 100 00 100 �. Eahof these samples is then improved by performing onjugate gradient asent on the
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0 10 20
30 40 50(a) PDAF
0 10 20
30 40 50(b) JPDAFFigure 5.8: JPDAF: Handling nearby textured regions (MPEG). (a) Frame sequeneusing �ve PDAF trakers; (b) Frame sequene using JPDAF traking.



97image likelihood funtion p(I jX). For the PDAF, eah traker's set of hill-limbedsamples is thinned independently by enforing a minimum separation of 10 pixelshorizontally and vertially. The resulting samples beome the measurements for eahtraker. The JPDAF arrives at a ombined pool of measurements by thinning theunion of the two sets of hill-limbed samples using the same minimum separation.With these parameters, the JPDAF suessfully traked both heads through therossing, maintaining the orret assoiations, in 10 out of 10 trials. The PDAFfailed in 10 out of 10 trials. In every ase, the traker assigned to the head of theperson walking to the left was distrated by the rightward-moving head, most likelybeause it was nearer to the amera and thus larger, resulting in both trakers lokingonto the same image feature.The ability of the Joint Likelihood Filter to infer the depth ordering of trakedobjets is illustrated in Figure 5.10. A white pawn hess piee is traked by a texturedregion as it moves behind and is thus partially oluded by a white knight, whihis traked by a snake. There is negligible saling or rotation over the duration ofthe sequene, so the state of eah traker is simply its image position and veloity,and is expressed as X = (x; y; _x; _y), making eah omponent's measurement spaeZ = X�Y . The snake has 16 segments. Measurement generation is done using puregradient asent with Powell's method. A traker's outline, normally red or green,is drawn in gray when the joint measurement and its depth ordering indiate thatit is partially oluded. The fat that the pawn is behind the knight during themiddle setion of the traking sequene is orretly dedued. There is some noise inthe olusion inferene, however, at the very beginning and end of the two piees'overlap beause it is based on so little information.Another example of depth-order inferene is given in Figure 5.11. Here, twohomogeneous regions with states X = (x; y) and the same measurement parameters
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0 6 12
18 24 30(a) PDAF
0 6 12
18 24 30(b) JPDAFFigure 5.9: JPDAF: Handling rossing homogeneous regions (MPEG). (a) Framesequene using two PDAF trakers; (b) Frame sequene using JPDAF traking.
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0 20 40
60 80 100Figure 5.10: Joint Likelihood Filter: Deduing the olusion relationship between atextured region and snake (MPEG).trak the olorful t-shirts of two people shaking hands. Powell's method is used tohill-limb the best 3 of 250 joint samples (using �X = � 200 00 200 � for eah omponentsample of the joint sample); the best one of these three is used to update the state.The Joint Likelihood Filter (JLF) also mathes the ability of JPDAF to trakmultiple rossing objets, as illustrated in Figure 5.12. In this example, two airplanesying in lose formation are traked using textured regions as they overlap andseparate. The planes sale, translate, and rotate, so the state of eah traker isexpressed as X = (x; y; �; s), making measurement spae Z = X � Y � � � S. Inthe PDAF example, eah traker selets the best 5 of 250 samples, where the statesampling ovariane is �X = � 50 0 0 00 50 0 00 0 0:02 00 0 0 0:01 �. Eah of these samples is then improvedusing Powell's method for gradient asent on the image likelihood funtion p(I jX). Finally, eah traker's set of hill-limbed samples is thinned independently by
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0 30 60Figure 5.11: Joint Likelihood Filter: Deduing the olusion relationship betweentwo homogeneous regions (MPEG). (Sequene ourtesy of J. MaCormik).enforing a minimum separation of 10 pixels horizontally and vertially, 0.1 radians,and 0.01 units of sale. In the Joint Likelihood Filter example, the best 5 of 250joint samples (using �X for eah omponent sample of the joint sample) are alsoimproved using Powell's method on the joint image likelihood, and the best of theseis used to update the state.Calulating their image likelihoods independently, eah plane traker is attratedby the two nearby mathing features in the image as they move together. When thetwo planes separate, both often follow the same feature, resulting in mistraking. Byalulating their image likelihoods jointly, both trakers separate properly when theirorresponding image features separate. This is beause of the built-in preferene,when the image supports it, for an interpretation that there are two visible objetsover an interpretation that one visible objet ompletely oludes the other. Therandom sampling tehnique for measurement generation is vital here beause evenusing the joint image likelihood, a pure gradient asent traker an get stuk in aloal minimum as the planes separate. The nonloality of random sampling allowsthe trakers to jump out of suboptimal states as the planes separate unambiguously.State estimation and the inferred depth ordering are somewhat noisy during theperiod of greatest overlap beause of the idential oloration, shape, and markings



101of the two planes, and beause of the poor resolution of the image.
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(a)

0 40 80
120 160 200(b) PDAF
0 40 80

120 160 200() Joint Likelihood FilterFigure 5.12: Joint Likelihood Filter: Handling rossing textured regions (MPEG).(a) Referene image; (b) Frame sequene showing states of two PDAF trakers; ()Frame sequene with JLF traker's state.



Chapter 6
Constrained Traking
An important assumption of the PDAF, JPDAF, and Joint Likelihood Filter al-gorithms is that the inidene of olusions and distrations aused by untrakedobjets or other visual phenomena is reasonably approximated by a uniform or Pois-son noise proess. When this approximation breaks down, as when suh ourrenesare atually due to persistent features of the visual environment, these traking �l-ters an yield biased results or mistrak. In the previous hapter our strategy forimproving robustness for the target of interest was to try to trak as many potentialdistrators as possible, allowing a prinipled predition of their visual interations.However, sometimes the harateristis of the bakground may hange as the objetmoves or there may be too many distrators for this approah to be eÆient. In thisase the seletion of what area of the objet to fous on and what traking modalityto use beome paramount in determining traking auray.With regard to making this seletion, it is useful to distinguish between an objetattribute, as de�ned in Chapter 4, and what we all a part. A part is a spatiallydistint image feature physially linked to the larger objet. Fundamentally, a partis what a traker traks, while an attribute is how the traker identi�es its target.103



104For example, a person's fae may be found in an image by searhing for a skin-olored region; or a pattern of textures mathing the arrangement of the eyes, nose,and mouth; or the spei� shape of the silhouette of their shoulders, nek, and headagainst a ontrasting bakground. The fae is a part (of the person's body), and thedi�erent ways of �nding and traking it are all attributes. Conversely, a person'shands, arms, and fae, if bare, an all be identi�ed by the same olor attribute, butare separate image features and thus termed parts.We have observed that when the noise approximation of the PDAF model isviolated, traking performane does not ollapse all at one but rather by degrees.That is, the more an objet is oluded or the better a distrating bakground featuremathes an attribute used for traking, the more severe the deterioration of aurayand the greater the hane of outright failure. This means that larger objets orobjets de�ned by many attributes may be less suseptible to distration than smalleror singly-de�ned objets, suggesting a strategy for improving traking robustness.The approah we take here to the problem of persistent distrators is to try toredue their inidene, and hene their inuene, by de�ning a target as a onjun-tion of parts and/or attributes. As more image features are used to identify a target,the number of visual phenomena that may potentially distrat the traking proessis redued. Even if something of the same olor is near the target, for example, itmay be of the wrong shape, or another part of the objet may not be distrated, al-lowing traking to proeed without interferene. An atomi traker with temporarilyweak disriminatory power an overome diÆult image onditions beause of theonstraints imposed by its linkage to other trakers. These fore onsideration of theentire ensemble of parts and attributes simultaneously when interpreting the image,helping to rule out inorret alternatives. Constraints are only appliable, of ourse,when we are traking a target omplex enough that it has multiple resolvable parts



105and/or attributes. This is ertainly true of many of the types of objets that we wishto trak, suh as people or ars, beause they are amenable to desription as a set ofsimpler, geometrially-onneted features under most image onditions.In this hapter we analyze the impliations on the traking proess of the knowl-edge that two or more of the targets are physially onneted. A linkage betweentargets means that they are parts of some larger objet, and that their states aretherefore not independent. This disallows the deomposition of the joint state priorp(X1; : : : ;XT ) = p(X1) � � �p(XT ) in Equation 5.3 that is a vital step in both theJPDAF and Joint Likelihood Filter multiple-objet traking algorithms.As with the joint image likelihood pJ(I jXJ) in the previous hapter, we needa more omplex formulation of p(X1; : : : ;XT ) that takes into aount the intera-tions between objets. Rather than prediting the visual results of bringing multiple,possibly independently-moving objets into a proximate or overlapping relationship,though, the joint state prior will be onerned with how multiple linked objets inu-ene one another's states, even at a distane. Inorporating onstraint informationsuh as this an have a salutary e�et on traking performane by (a) shrinking searhspae, making proessing faster for eah frame, and (b) disounting or eliminatingfrom onsideration joint events/measurements that do not reet expetations aboutthe interrelationship of the linked parts.In the next part of this hapter we introdue an extension to the Joint LikelihoodFilter (JLF) alled the Constrained Joint Likelihood Filter, or CJLF, that implementsinter-part onstraints eÆiently and simply. We then present results demonstratinghow the CJLF improves traking performane in many visual situations over thepreviously desribed algorithms, and enables ertain traking tasks to be arried outfor whih those algorithms are not suited.



1066.1 Constrained Joint Likelihood FilterThe JLF assumes that targets move independently of one another. An objet suhas a human body, though, violates this requirement when viewed as a group ofparts: the onnetions between the arms, head, torso, et. limit the possible rangeof their relative positions and motions. The expetation that parts or attributes of aomplex traked objet will be in a partiular on�guration is extra information thatmay help distinguish the objet from the bakground or other objets. In this setionwe desribe modi�ations we have made to the JLF to enode these relationships.We all this method the Constrained Joint Likelihood Filter (CJLF), diagrammedin Figure 6.1.The key idea behind the CJLF is an elaboration of one of the most basi kindsof onstraints: limitation of the number of parameters in an objet's state, whihin turn redues the size of its measurement spae. We have been using this formof onstraint for atomi trakers already when we analyze the objet, the trakingtask, and the visual environment in order to deide whether to allow the traker totranslate, sale, rotate, or even shear (for snakes). If the objet to be traked onlyslides bak and forth horizontally, for example, or rotates in plae, then there is noreason to give the traker more than the minimal degrees of freedom required tofollow that lass of movement. To do otherwise only provides the traker with anopportunity to mistrak along an extraneous state dimension.For a multi-part or multi-attribute objet, there are multiple trakers for whihthis kind of deision must be made. The CJLF simply formalizes the ommonsensenotion that a minimal state desription of the entire objet (or, more exatly, thatportion whih is being traked) implies ertain orrelations between and limitationson the states of its onstituent parts and attributes. As an example, suppose that



107we want to trak the headlights of a truk driving diretly toward the amera. Anaive approah is to give eah traker a state with translation and sale parameters:Xleftlight = (xl; yl; sl) and Xrightlight = (xr; yr; sr). However, we know that the twolights are physially onneted by the truk hassis and as suh annot move inde-pendently. Our state desription is thus underonstrained, and a ursory analysis ofthe frontoparallel geometry of the truk grille indiates that Xleftlight an be imme-diately derived from Xrightlight (or vie versa). In other words, only 3 rather than 6variables are neessary to fully desribe the system, though image proessing at bothloations of ourse yields more robust estimation than at one alone.Ordinarily, a speial-purpose traker with a ustomized image likelihood funtionp(I jX) is reated for traking a ompliated objet like the one in the example above.The CJLF is a framework for ahieving the same performane as a ustomized ap-proah, but in a exible fashion that avoids the onstrution of a speialized imagelikelihood funtion for eah new traking task. Rather, the CJLF works by providinga small set of rules for omposing the simple, atomi trakers that we have alreadydeveloped into more omplex assemblages for whih the joint image likelihood re-mains a produt of omponent likelihoods. The rationale for this deision is twofold:(1) to redue the amount of time spent on analysis and ode writing for novel trak-ing tasks by permitting ode reuse, and (2) to provide a standard interfae for newmethods to easily be integrated with existing ones.The ompositional primitives used by the CJLF are based on intuitive physialrelationships suh as rigid links, hinges, and �xed depth orderings. Given a set ofparts or attributes with unonstrained state spaes X1; : : : ;XT , these rules serve as aguide for paring them down to their minimal, onstrained forms: X 01; : : : ;X 0T . Whenthe paring removes all degrees of freedom of a traker, as would our with oneof the headlights from the example above, its state spae beomes empty. It is still
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Constraints�Measurement Generationt1; : : : ; tT?AssoiationProbabilitiest1 ?AssoiationProbabilitiestT?StateEstimationt1 ?StateEstimationtTFigure 6.1: Constrained Joint Likelihood Filter pipelinedesirable to perform image proessing for that traker (suh as looking for the seondheadlight), so as a matter of bookkeeping the notion of the traker is retained. Thisproess is the primary method by whih onstraints are introdued into the jointprior on states p(X1; : : : ;XT ).In addition to reduing the degrees of freedom available to some of the trakers,the CJLF's ompositional rules also indiate how to derive the image proessingvariables of linked parts from one another (e.g., where the left headlight is if weknow the position and sale of the right headlight). The details of this derivationare expliated for eah of the rules in the next setion. Finally, though we do notuse them for any of the examples in this hapter, the CJLF allows hard limits to beplaed on state variables suh as a range of permissible angles or sales. This allowsfurther spei�ity in determining the form of p(X1; : : : ;XT ).For purposes of implementation, the Constrained Joint Likelihood Filter approahalters the method of obtaining geometri image proessing parameters detailed inChapter 4. Let eah target tj have a measurement key Kj. Previously the domain ofeah funtion inKj was Xj; we now extend it to the joint state spae X J . This allows



109us to refer to the omponent measurement geometri parameters of any target ti tode�ne tj's omponent measurement geometri parameters. A aveat is that aremust be taken that there are no irularities in the de�nitions of the Kj for thevarious targets. Nonetheless, this onstitutes a onvenient and powerful mehanismfor enforing onstraints.The e�et of this redution in the joint state spae is to alter the Joint LikelihoodFilter so that it onsiders only those joint state samples whih satisfy the onstraintsexatly, allowing their joint probabilities to be omputed normally. Sampling andhill-limbing an then be used as in the previous hapter while still meeting theonditions on the interrelationship of the parts. However, as with the JPDAF andJLF, only one measurement is ultimately used to update the state. This is beausethe weighted ombination of measurements arried out by the PDAF �lters an giverise to states not satisfying the onstraints.6.1.1 Rigid link onstraintsThe simplest kind of onstraint between measurements is a rigid link. By our de�-nition, a rigid link between two objets t1; t2 implies that t2's urrent geometri pa-rameters are ompletely determined by their initial values and t1's urrent values|ithas no state or measurement spae of its own to speak of. Its only funtion is toontribute to the alulation of the joint image likelihood p(I jX1;X2). Thereforet2 does not use a Kalman �lter to estimate its own state; its purpose is as an ad-junt that makes t1 a more omplex visual objet. As an example, suppose that tworigidly-linked objets are allowed to translate, sale, and rotate, and that the initialo�set between them sales as they do. This joint objet on�guration is diagrammedin Figure 6.2(a). Then X1 = (x1; y1; s1; �1) and K1 = (x1; y1; s1 �w1; s1�h1; �1)T , whilethe geometri image proessing parameters of t2 are alulated diretly from the
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�x1; �y1 ��1

�x2; �y2 ��2 �x1; �y1 ��1

�x2; �y2 ��2
�xh; �yh ��h(a) (b)Figure 6.2: Constraint types. (a) Initial on�guration of a rigid link; (b) Initialon�guration of a hinge.following:

K2 =
0BBBBBBBBBBB�

x1 + s1(Æx os(�1 � ��1)� Æy sin(�1 � ��1))y1 + s1(Æx sin(�1 � ��1) + Æy os(�1 � ��1))s1 �w2s1�h2�1 + Æ�
1CCCCCCCCCCCA (6.1)

where Æx = �x2 � �x1, Æy = �y2� �y1, and Æ� = ��2� ��1. It is onvenient to represent therigid link transformation that takes the geometri parameters of objet i to those ofobjet j as a funtion Ri;j. Thus, K2 = R1;2(K1).It is straightforward to generalize a two-part, rigidly-onstrained joint objet toa T -target system. T rigidly-linked parts an be modeled by treating them as T � 1linked pairs, every one of whih inludes target t1, whih has a state, measurementspae, and measurement key exatly like the �rst objet in the example above. Thenfor all i > 1, target ti has no state or measurement spae, like the seond objetin the example, and its measurement key Ki is of the same form as that given inEquation 6.1, exept that the appropriate initial parameters �xi; �yi; ��i; �wi, and �hi are



111substituted where �x2; �y2; ��2; �w2, and �h2 appear, respetively. Using the funtionalnotation, Ki = R1;i(K1).6.1.2 Hinge onstraintsA somewhat more omplex onstraint is a hinge (we avoid the more ommon term\joint" beause of its other onnotations in this dissertation). A hinge is similar toa rigid link but with an angular degree of freedom granted to the seond objet;the axis of rotation is determined by the initial image loation of the hinge: �xh; �yh(see the diagram in Figure 6.2(b)). Using the two-part joint objet from above asan example, if we allow the ensemble to translate, sale, and rotate freely and theseond part to rotate independently about the hinge, then the state of the �rst partis again X1 = (x1; y1; s1; �1) and K1 = (x1; y1; s1 �w1; s1�h1; �1)T . However, the stateof the seond part is now X2 = (�2), where the angle represented by �2 is relativeto the ray from (x1; y1) through the urrent hinge loation (xh; yh). Following thederivation for a rigid link,0B� xhyh 1CA = 0B� x1 + s1(Æ�hx1 os(�1 � ��1)� Æ�hy1 sin(�1 � ��1)y1 + s1(Æ�hx1 sin(�1 � ��1) + Æ�hy1 os(�1 � ��1)) 1CA (6.2)where Æ�hx1 = �xh � �x1 and Æ�hy1 = �yh� �y1. If the initial value of the hinge angle is ��h,the geometri parameters of the seond objet are:
K2 =

0BBBBBBBBBBB�
xh + s1(Æ+hx2 os(�2 � ��h)� Æ+hy2 sin(�2 � ��h))yh + s1(Æ+hx2 sin(�2 � ��h) + Æ+hy2 os(�2 � ��h))s1 �w2s1�h2�1 + �2 + Æ� � ��h

1CCCCCCCCCCCA (6.3)



112where Æ+hx2 = �x2 � �xh and Æ+hy2 = �y2 � �yh. The hinge transformation between objetsi and j is denoted by Hi;j.We an also extend the mathematis of a single hinge onstraint to a systemof multiple hinges. T parts onneted in sequene by T � 1 hinges form what isommonly alled a hain [22℄. Let C be a hain onsisting of T hinge-onneted parts:C = (t1; : : : ; tT ). We an speify the onstraint on eah part along C indutively: ifthe �rst and seond links t1; t2 are de�ned by the two-part system introdued above,then the state of the ith part for i > 1 is Xi = (�i) and its measurement spaeis Zi = �. Given the measurement key K1 of the �rst part t1, the measurementkey of the ith part ti is given by Ki = Hi�1;i(Hi�2;i�1(: : :H1;2(K1) : : :)). By writingHi�1;i(Ki�1), the alulations that lead to Ki�1 are assumed.Chains an also branh. Suppose the �rst part t1 in a hain whih arries itstranslational and saling degrees of freedom is alled the head, and the other partswhih only have an angular degree of freedom are alled tails. One hain Ca =(ta1 ; : : : ; taTa ) an be attahed to another Cb = (tb1 ; : : : ; tbTb ) at part tbi along Cb'slength by onverting ta1 to a tail and rede�ning Ca as Ca = (tb1 ; : : : ; tbi ; ta1 ; : : : ; tTa).6.1.3 Depth onstraintsAnother useful kind of onstraint is related to depth. When there is an expetationthat some subset of the objets being traked will not olude one another, we anollet them into a depth group. Objets in the same depth group are not maskedagainst one another during omputation of the joint image likelihood. When justi�ed,grouping objets in this way is more eÆient beause there are fewer depth orderingsto onsider for eah joint measurement.An obvious situation to whih depth groups apply ours when traking an objetwith multiple attributes. Sine attributes represent qualities of a physial objet



113rather than the objet itself, multiple instanes an be \layered" onto a single objetwithout a�eting the visibility of any of them. When a person's fae, for example, istraked by both a textured region traker (to apture appearane) and a homogeneousregion traker (for skin olor), the two trakers are members of the same depth group.Depth groups are also appropriate for parts linked by onstraints under ertainviewing and motion onditions. Though these parts are spatially distint, if theyare physially prevented from overlapping they an also be plaed in the same depthgroup. For example, onsider a person's arm viewed in pro�le as it moves parallel tothe image plane. Considering the upper arm and forearm as two parts traked usingany modality, the joint limits of the elbow allow at most negligible overlap due todepth, and thus we an ignore this interation. The depth-independent interationsbetween parts that are illustrated in Figure 5.7 still apply to parts in the same depthgroup, however. When two parts abut eah other, even if neither is oluded thereis still a hange in the bakground along some portion of their perimeters and thusa hange in eah part's expetations about olor ontrast and edge-�nding.6.2 ResultsThough a rigid link is a fairly simple onstraint, it an be used to good e�et, as the�rst two examples demonstrate.In Figure 6.3, we want to trak a white pawn in a visual environment that ontainsa similarly-olored objet (a white rook) and a similarly-shaped one (a blak pawn).One obvious avenue is to try to trak the pawn by olor. We use a Joint LikelihoodFilter traker onsisting solely of a homogeneous region initialized as shown in frame0 of Figure 6.3(d).1 There is negligible saling or rotation and movement is slow,1A single-objet JLF is not the same as a standard PDAF traker beause of the way mathvalues are used in the omputation of the joint image likelihood pJ(I jXJ), but we use the JLF



114so we let the state be X = (x; y), making measurement spae Z = X � Y . Thehomogeneous region traker selets the single most likely of 50 samples using a statesampling ovariane of �X = � 50 00 50 � and improves it with Powell's method.This approah does not work, as illustrated in the frame sequene in Figure 6.3(d),beause the untraked white knight �ts the olor model well and attrats the pawnstrongly. The fundamental problem is the presene of a strong, persistent peak dueto the knight in the homogeneous region's image likelihood, depited at frame 0 inFigure 6.3(a), that is not expeted by the Joint Likelihood Filter traker. If theknight were also traked, as was the ase with the two-objet example in Figure 5.10from the previous hapter, then the Joint Likelihood Filter would prevent mistrakingaused by multiple peaks in the likelihood.Traking the pawn in a similar fashion with a snake alone yields better results:the pawn is rarely mistraked, but there is some noise in the state estimation due totransient distrations aused by pawn-like arrangements of edges, suh as betweenthe �ngers. This improved performane an be predited from the image likelihoodfor the snake psnake(I jX), represented as an image for I =frame 0 in Figure 6.3(b).We an onveniently draw the likelihood as an image for this example beause thedimensions and limits of Z orrespond exatly to the image width and height. Theintensity I(x; y) of eah pixel of the likelihood image is drawn aording to thefuntion I(x; y) = 255 � psnake(I j (x; y)). The snake image likelihood has many moremaxima than that of the homogeneous region, but none are nearly as high as theone orresponding to the snake. This quanti�es our intuition that shape is a betterue for this task than olor.Without knowing ahead of time whih modality, if any, is suÆiently distintivefor suessful traking, a prudent strategy is to use multiple attributes simultane-here to make omparisons with the CJLF learer.



115ously. The onjuntion of olor and shape results in a joint image likelihood pJ(I jXJ)with peaks only where both likelihoods phregion(I jX) and psnake(I jX) have peaks.This often redues distrations, as an be seen in the representation of pJ(I jXJ) inFigure 6.3().Formally, we an utilize the pawn's olor and shape simultaneously by modelingthe hess piee with two linked attributes|a homogeneous region and a snake|withthe onstraint that the enters of the region and snake be oinident. Arbitrarily,we let the homogeneous region traker ontain the state X1 = (x1; y1), making itsmeasurement spae Z = X�Y . Its measurement key is the same as that of the �rstobjet in the rigid link example above, without saling: K1 = (x1; y1; �w1; �h1; ��1)T .The snake traker has no state and an empty measurement spae; its measurementkey is simple beause the link has a length of 0: K2 = (x1��̂x; y1��̂y; �q2; �q3; �q4; �q5)T .Both trakers are in the same depth group.The pawn's joint region-snake traker follows the same regime of hill-limbing onthe single best of 50 samples as the single-attribute trakers above. As Figure 6.3shows, this onstrained formulation permits the pawn to be suessfully traked whenthe homogeneous region alone fails. We have also observed that the estimated stateof the pawn is less errati using onjoined trakers than is obtained by using thesnake traker alone.Another example of traking with the CJLF is given in Figure 6.4. In the inputsequene, a person walks from the left side of the frame slightly toward the ameraand then in pro�le to the right. Suppose we want to trak the person's fae asa homogeneous region with a single-part Joint Likelihood Filter traker. Let thestate be X = (x; y; _x; _y; s) beause the fae translates relatively quikly and salesgradually but signi�antly from the �rst frame to the last. Measurement spae isZ = X � Y � S; the best single sample of 50 is improved using Powell's method,
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(a) (b) ()
0 50 100(d) One-attribute JLF traker
0 50 100(e) Two-attribute CJLF trakerFigure 6.3: Multi-attribute Constrained Joint Likelihood Filter (MPEG). (a) phregion(I jX)for homogeneous region; (b) phregion(I jX) for snake; () pJ(I jXJ) for both; (d) A homo-geneous region JLF traker is distrated by the white knight; (e) A CJLF homogeneousregion and snake traker overomes the distration.



117where �X = � 50 0 00 50 00 0 0:001 �.A sequene of frames from one run of this traker is shown in Figure 6.4().Beause of a somewhat skin-olored brik wall in the bakground, poor lighting, anda suboptimal skin olor model, the disriminatory power of the fae traker is verymarginal. This an be seen in Figure 6.4(a), whih shows the olor similarity faeof frame 0 to the fae. The fae traker is distrated by a olumn of tan briks inthe enter of the image; when the person emerges on the other side of the briks,traking has failed. This ours for essentially the same reason as with the pawntraking example above: the briks are unmodeled, very similar to the target, andin lose proximity to it for too many frames.A traker with the same �lter parameters an trak the red shirt through the samesequene without any problems, however. Figure 6.4(b), depiting shirt for frame 0,shows why the olor of the shirt is a muh more distintive ue than the fae's olorin this visual environment. The shirt is not a di�erent attribute of the fae like shapeand olor were for the pawn, but rather a di�erent part of the person's upper body.This suggests that we an improve the fae traker's performane by exploiting itsphysial onnetion to the shirt with a two-part Constrained Joint Likelihood Filtertraker.We impose the onstraint between the fae and shirt as a rigid link that sales withthe two parts but does not rotate (sine they do not). Letting the fae traker ontainthe state X1 = (x1; y1; _x1; _y1; s1)) makes its measurement spae Z1 = X � Y � S.The measurement key of the fae traker is K1 = (x1; y1; s1 �w1; s1�h1; ��1)T . The shirttraker has no state and an empty measurement spae; its measurement key is K2 =(x1 + s1Æx; y1 + s1Æy; s1 �w2; s1�h2; ��2)T , where Æx = �x2 � �x1 and Æy = �y2 � �y1. Thetrakers are put in the same depth group.Figure 6.4(d) demonstrates that linking the shirt and fae traker together in
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(a) (b)
0 60 120() One-part JLF traker
0 60 120(d) Two-part CJLF trakerFigure 6.4: Multi-part Constrained Joint Likelihood Filter: Resisting a distrating bak-ground (MPEG). (a) Fae olor math fae; (b) Shirt olor math shirt; () One-partJoint Likelihood Filter traker on the fae is distrated; (b) Two-part Constrained JointLikelihood Filter traker on the fae and shirt sueeds.



119this manner overomes a distratingly fae-olored bakground. The CJLF trakersometimes bobbles slightly as the fae passes in front of the brik olumn beause thetraker briey explores the possibility of not translating anymore and instead simplyexpanding to inluding the briks, the fae, and the shirt. This part of measurementspae is quikly disarded, however, as the proportion of non-mathes in the largerarea dilutes its �tness ompared to the orret interpretation. Phenomena suh asthese are another reason why pure gradient asent traking is not always workable:when used here, the traker gets stuk in a loal maximum of state spae thatorresponds to expanding easelessly and annot jump to the better alternative asrandom sampling does.We should also note that the fae traker is not just \along for the ride" as theshirt traker smoothly proeeds. Though the shirt traker may be the more valuablepartner, the joint image likelihood ensures that both omponents ontribute to theproess equally (i.e., without regard to area, sine mean math values are used).Indeed, beause the rigid onstraint without rotation is neessarily an approximation,the fae often fores the joint state estimate to a ompromise sale and position thatbest inludes both regions, rather than �tting the shirt region with preision andderiving the fae region estimate afterwards.A more ompliated situation whih shows the advantage of the Constrained JointLikelihood Filter over the Joint Likelihood Filter is shown in Figure 6.5. Here we wantto trak a person's hand and forearm as homogeneous regions while they shake handswith another person, who is not traked. To aount for quikly hanging positionand angle, eah omponent (i = 1; 2) of the Joint Likelihood Filter traker has astate of the same form: Xi = (xi; yi; �i; _xi; _yi; _�i), making their measurement spaesZ1 = Z2 = X � Y � �. Aelerations during the handshake are too large for puregradient traking, so eah omponent traker selets the best 1 of 50 samples, where



120the state sampling ovariane is �X = � 50 0 00 50 00 0 0:02 �. This sample is then improvedusing Powell's method for gradient asent on the joint image likelihood funtion.The math threshold for the homogeneous regions here is �hregion = 2. Despite thesemeasures, the hand traker mistraks when its target is in lose proximity to theother person's hands (whih are not being traked) due to distration. The forearmtraker wanders up and down the sleeve beause there is no reason for it to remain�xed at one end.These shortomings an be eliminated by introduing the onstraint that there isa hinge (i.e., the wrist) joining the hand and forearm trakers to one another at themidpoints of their abutting short sides. Formally, the state of the forearm trakerremainsX1 = (x1; y1; �1; _x1; _y1; _�1) and its measurement spae is alsoZ1 = X�Y ��.Its measurement key is the same as that of the �rst objet in the hinge exampleabove, without saling: K1 = (x1; y1; �w1; �h1; �1)T , and the sampling ovariane isalso �X1 = � 50 0 00 50 00 0 0:02 �. The hand traker, however, has only one degree of freedom,and its state is just X2 = (�2; _�2), reduing the measurement spae to Z2 = �.Thus, the sampling ovariane for the hand is �X2 = � 0:02 �. The hinge angle isinitially 0, the hand and forearm have the same initial orientation, and there is nosaling, simplifying the form of the hand's measurement key onsiderably omparedto Equation 6.3 to yield:
K2 =

0BBBBBBBBBBB�
x1 � 12 �w1 os(�1)� 12 �w2 os(�1 + �2)y1 � 12 �w1 sin(�1)� 12 �w2 sin(�1 + �2)�w2�h2�1 + �2

1CCCCCCCCCCCA (6.4)
where the hand and forearm are also onsidered to be in the same depth group.
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(a) (b)

() (d)Figure 6.5: Constrained joint likelihood: Using a hinge onstraint at the wrist to preventmistraking during a handshake (MPEG). (a) Frame 0 of sequene of homogeneous regiontrakers on hand and forearm; (b) A distrating situation: hand olor similarity  at frame260; () Running a Joint Likelihood Filter traker for both parts, the hand traker isdistrated by other person's hand (frame 260); () The Constrained Joint Likelihood Filterformulation permits aurate traking of the hand (frame 260).Adopting this approah prevents the hand and forearm trakers from oatingapart; relatively higher joint image likelihoods keep the hinge at the sleeve-handborder. The result is that during the period of ambiguity when the two hands arelasped together, a realisti interpretation of the situation is maintained and trakingproeeds orretly after the hands are fully separated.Another task to whih the CJLF is well suited is illustrated in Figure 6.6. In



122this ase we want to trak a person's whole arm, from shoulder to �ngertips, as theyraise their hand from a omputer mouse to their fae and lower it again. There isartiulation at the elbow and wrist, and the person's fae will not be traked and istherefore an unmodeled distrator. Sine the person is wearing a short-sleeved shirt,we divide the arm into four areas and assign eah a traker: the sleeve (i = 1), theexposed skin of the upper arm (i = 2), the forearm (i = 3), and the hand (i = 4).The wrinkles in the fabri of the sleeve provide good texture, so it will be trakedby a textured region; the other areas are traked by homogeneous regions. Sine themovement is nearly all in a plane parallel to the image plane, we neglet saling andfous on translation and rotation.Using the JLF, the state of eah traker is Xi = (xi; yi; �i; _xi; _yi; _�i), makingeah omponent's measurement spae Zi = X � Y � �. Powell's method is usedfor pure gradient asent on the joint image likelihood, with the best of all visibility-a�eting depth orderings serving as the starting point for hill-limbing for eah frame.The initial arrangement of the trakers is shown in Figure 6.6(b), frame 0. Thismethod is able to follow the movement of the arm in a gross sense, but the degreesof freedom of eah traker permit onsiderable shifting and rotational variability ofthe homogeneous region trakers along the arm. In partiular, the upper arm trakerdoes not maintain the orret position and the hand traker is severely distrated bythe similarly-olored fae as they separate (see Figure 6.6(a)). The textured regionsleeve traker performs well throughout the sequene.The CJLF mitigates these problems to a large extent by exploiting the additionalinformation available about the onnetivity of the di�erent areas of the arm. Theseonstraints redue the degrees of freedom of eah traker and e�etively boost theperformane of marginal trakers by deriving their state information from betterperforming trakers to whih they are linked. Under the CJLF, only the state of



123the textured region sleeve traker is unhanged: X1 = (x1; y1; �1; _x1; _y1; _�1). Itsmeasurement spae is Z1 = X�Y ��, and its measurement key is the same as thatof the forearm in the handshaking example: K1 = (x1; y1; �w1; �h1; �1)T . The upperarm traker is rigidly linked to the sleeve traker, so it has no state or measurementspae per se; its measurement key reets the rigid onstraint:
K2 =

0BBBBBBBBBBB�
x1 + b os(�1)� 12(�h1 + �h2) sin(�1)y1 + b sin(�1) + 12(�h1 + �h2) os(�1)�w2�h2�1

1CCCCCCCCCCCA (6.5)
where b = 6 is an o�set reeting the fat that the sleeve hangs slightly belowthe arm. A ompressed expression for the upper arm measurement key is given byK2 = R1;2(K1).The forearm traker is linked to the upper arm traker via a hinge onstraintat the elbow, so its only free parameter is a relative angle. This makes its stateX3 = (�3; _�3) and measurement spae Z3 = �. The exat loation of the hinge isat the midpoints of the abutting ends of the upper arm and forearm retangles; weforego the geometri derivation and de�ne the forearm traker's measurement keyas K3 = H2;3(K2). Similarly, the hand is linked to the forearm by another hinge.Its state is X4 = (�4; _�4) and its measurement spae is Z4 = �. The wrist hinge isloated at the midpoints of the abutting ends of the forearm and hand retangles,making its measurement key K4 = H3;4(K3)The math threshold of the sleeve traker is �tregion = 30 and for the homogeneousregions it is �hregion = 2. All of the arm parts are in the same depth group beauseof the viewing angle.



124As an be seen from Figure 6.6(), the mixture of rigid and hinge onstraintsbetween the four parts of the arm onsiderably improves traking performane. Theparts maintain their relative positions and angles along the arm quite well, andthe untraked fae auses no appreiable problems throughout its overlap with thesimilarly-olored hand.
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(a) Arm olor similarity 

0 30 60
90 120 150(b) Joint Likelihood Filter
0 30 60

90 120 150() Constrained Joint Likelihood FilterFigure 6.6: Traking an arm in four setions (MPEG). (a) Fae is distrating to handtraker (frame 130); (b) Frame sequene using JLF; () Frame sequene using CJLF.



Chapter 7
Related Work
In this hapter we disuss previous work on traking and its relationship to the frame-work presented in this dissertation. In the �rst setion we over other approahes totraking single objets, inluding the modalities used and the underlying state up-date algorithms. The seond setion surveys other work on jointly traking multipleobjets and how it di�ers from ours. Finally, we summarize previous researh onombining di�erent modalities and adding onstraints between trakers in order toahieve more robust traking.7.1 Single Objet Traking7.1.1 ModalitiesThe image ues|olor, texture, motion, shape, depth, and so on|that have beenused for traking are quite varied. Typially, a single attribute is used to disriminatean objet from the rest of the sene, making the seletion of an identifying attributequite important in determining the performane of the traker. In this setion weexamine vision researh related to olor, texture, and shape as traking modalities,126



127as well as other urrently popular and possible future ues.ColorThere have been numerous approahes to olor representation for traking and searh.Swain's olor histogram [114℄ is one popular method. The olor omponents of thepixels within an objet are histogrammed; a histogram intersetion an be omputedbetween this histogram and an area of the image to test the similarity of the two.A useful feature of this algorithm is its ability to de�ne an objet as onsisting ofmultiple olors in ertain proportions (e.g., 34 red and 14 blue). However, there is nofaility for speifying their relative geometri distributions (e.g., red above blue).For example, Birh�eld's elliptial head traker uses olor histograms [11℄. Colorspae is a transformation of RGB spae that enodes hrominane in two parametersG � R and B � G of eight bins eah and luminane in the third, R + G + B, withfour bins. The degree of math between the pixels in a postulated ellipse loationand the histogram model is given by the histogram intersetion formula in [114℄.In the same vein, Bradski traks a person's fae in [19℄ with a window that istranslated and saled to maximize the �t of the pixels it ontains to the fae olormodel. This model is built by sampling skin-olored pixels and making a histogramof their hues (the �rst omponent in HSV spae); image pixels whose hues fall intohigh-ontent bins are assigned proportionally high probabilities of being skin-olored.Pixels with low intensities or saturations have very noisy hues, so these are ignored.Flek et al. expliate a searh proedure that relies on olor and geometry todetermine whether there are naked people in images in [42℄. Skin-olored pixels aresegmented with ranges in hue and saturation values after a log-opponent transfor-mation of RGB spae adapted from [46℄. Darrell et al. use a similar log-opponentolor representation for fae traking in [31℄.



128The P�nder system [122℄ models parts of a person's body suh as their fae, hands,and shirt with 5-D Gaussian ellipsoids, or blobs: a 2-D image spatial omponent plusa 3-D olor omponent in Y UV spae. Eah bakground pixel is modeled with a 3-DGaussian in Y UV spae. A speial step attempts to detet whether part of a blobis in shadow, and if so, the olor omponents are normalized by intensity as follows:U� = U=Y , V � = V=Y .Similarly, [20℄ traks blobs as Gaussian ellipsoids with a 2-D spatial omponent,an optial ow omponent omprising either translation and rotation or aÆne motion,and optionally a 2-D olor omponent in HSV spae.Stau�er and Grimson [113℄ adaptively model individual bakground pixels with amixture of Gaussians in RGB or HSV spae. They use a Gaussian not for modelingthe variation in olor over the extent of an objet, but rather its variation over timeat a single image loation due to sampling noise. The Gaussian mixture aounts forsuh phenomena as trees swaying, light glinting, monitors ikering, et. that anresult in multiple ontributions to a pixel's olor.SSDEarly work on image orrelation for traking was reported in [1, 80℄. Shi and Tomasire�ne this approah and desribe a tehnique for �nding textured image pathes andtraking their aÆne motion in [109℄. There is onsiderable overlap between this SSDwork and the motion estimation researh typi�ed by [9℄.Hager and Belhumeur exhibit a solution in [51℄ to the problem of SSD trakingwhen there are variations in objet pose and in the ontrast, intensity, and thediretion of the light soure. The method assumes that the surfae of the objetbeing traked is rigid, Lambertian, and that there is no self-shadowing.A larger set of inuenes on image appearane are onsidered in [12℄. Image



129hange is explained as a mixture of auses suh as motion (inluding non-rigid),illumination variation, speularities, and ioni hanges (objet-spei� olusionsand material hanges suh as teeth appearing and disappearing as a person's mouthopens and loses). The EM algorithm is used to determine the ontributions of thevarious models. Results are only given for the three possible pairs of models thatinlude motion.The ative blob method of [106℄ de�nes an objet model in terms of a deformable3-D mesh to apture shape and a olor texture map for its appearane. The objetmay bend and twist as it moves, and global intensity and ontrast variations are om-pensated for. A Lorentzian inuene funtion [14℄ replaes the standard quadratiSSD error norm in order to ahieve more robust traking in the presene of outliersaused by speularities and small olusions. Robust statistis are also disussedfor SSD traking in [51℄. Though we have not adopted them here, robust statistialformulations of the image likelihoods p(I jX) for all three of our modalities wouldlikely improve their traking performane in ertain irumstanes.ContoursAn early formulation of the ontour traking problem is given by Kass et al. in [72℄using energy funtionals. Under their de�nition, a snake is a spline whose shape isdetermined by the sum of three fores: an internal fore that governs the smoothnessof the urve, an external fore that guides the initial plaement of the snake, andan image fore that attrats the snake to edge and line features. Intensity and thegradient are two quantities that ontribute to the image fore. The method is appliedprimarily to �tting shapes in single images, but an example of lip traking is alsogiven.A somewhat di�erent approah to snakes is taken by Blake et al. in [16, 18℄. Their



130B-spline representation permits a detailed desription of the urve's shape, whihthey all a template. However, only low-dimensional deformations of the template(e.g., an aÆne transformation) are allowed to represent the evolving state of the urveafter initialization. The onstraints on permissible shapes are derived for variousassumptions about the urve and its motion, suh as planarity, in-plane motion,et. Reduing the size of the shape spae avoids unonstrained movement of theB-spline ontrol points, whih an often result in mistraking. With tuned priorson objet dynamis, this tehnique demonstrates robust, real-time traking of fast-moving hands and lips [17℄.In the same spirit, an ellipse with a �xed aspet ratio serves as a shape model fortraking a person's head in [11℄. The ellipse is allowed to rotate, sale, and translatein order to maximize an edge math formula that favors a large gradient magnitudeat eah point along the oval's perimeter in onjuntion with a gradient diretion thatis also normal to the urve at that point.A learned subspae model for ontour traking is presented in [26℄ and [8℄. Theyuse prinipal omponents analysis (PCA) on a set of outlines of objets to omputetheir range of motion and use this to parametrize the possible urve shapes duringtraking. This approah is applied to B-splines to trak the silhouettes of walkingpeople in [8℄.Other modalitiesThere are many other potential modalities suitable for use in traking besides olor,appearane, and shape. In this setion we review a few of the most frequently used.Perhaps one of the most popular ues for traking is motion. With a �xed amera,simple di�erening between suessive frames is suÆient to loalize motion andhene serve as a basis for segmentation in the same way that we use  for olor.



131The target may stop moving from time to time, though; one way around this is toompare the urrent frame to a referene image without the target in it (i.e., thebakground). P�nder [122℄ omputes a per-pixel bakground olor model that is avital omponent in loalizing the traked person. Bakground models are also usedfor person traking in [103℄ and for person and ar detetion and traking in [113℄.Going further, one an also use optial ow to extrat diretional information.Cutler and Turk [30℄ ompute optial ow and segment it into blobs to lassifywaving, lapping, apping, and other motions of a person's hands. When the ameraitself is in motion, more sophistiated tehniques that ompensate for egomotionmust be used. A possible preursor to motion-based traking is an algorithm foromputing a layered representation of multiple motions in a sene, inluding that ofthe bakground, given in [105℄. Irani and Anandan desribe a system along theselines for deteting and traking moving objets while moving in [58℄.Stereo or other depth ues are another obvious andidate for use in traking. Astereo version of P�nder orrelates olor blobs from two ameras for depth estimation[3℄. Darrell et al. segment faes by intensity from a disparity map omputed by ahardware stereo solution [31℄. Speialized hardware suh as Kanade's mahine foromputing a dense depth map at frame rate [70℄ and Konolige's low-ost board forobtaining a somewhat ruder depth estimate [77℄ have reently made this modalitymuh more pratial.Indeed, a frequent obstale to adopting otherwise promising ues as trakingmodalities is the omputational expense assoiated with them. Virtually any methodthat segments an image into regions sharing some ommon visual property or searhesfor mathes in an image database ould potentially be the basis of a traking al-gorithm. Though there are a number of diverse segmentation and edge detetionalgorithms that yield exellent results, many take on the order of hours or more for



132eah image, rendering them unusable for real-time tasks. Nonetheless, as these algo-rithms are oded more eÆiently or fast approximations are found for them, and asomputing power ontinues to inrease geometrially, they ould soon �nd their wayinto a traking framework suh as ours.7.1.2 Traking methodsThere are a few standard ways that modalities have typially been used for traking.Historially, a ommon method has been to de�ne a modality-spei� error funtionthat measures the degree of math between a hypothesized objet state and the imageevidene and do gradient asent or desent on it. A related but distint approah isto frame the traked objet parameters as the solution to a set of equations, leadingto another set of iterative methods for zero-�nding. When the system of equations isoveronstrained, least-squares tehniques are employed [94℄. Many researhers havefound it advantageous to extend this basi approah with a Kalman or similar �lter.A Kalman �lter smooths the state estimate in the fae of noisy data and allows theaddition of dynamis (veloity, aeleration, et.) to the state for better preditivepower. More reently, there has been onsiderable interest in the Condensationalgorithm [59℄, a randomized estimation proedure that exhibits good performanewhen there is visual lutter that may distrat a standard Kalman �lter. In this setionwe disuss these three traking paradigms and their relationship to the frameworkpresented in this dissertation.The interested reader is also referred to a number of other randomized opti-mization methods suh as simulated annealing [87℄, RANSAC [41℄, and the genetialgorithm [47℄. They might also prove adaptable to traking, though thus far therehas been little work along these lines.



133Iterative algorithmsKass et al.'s energy minimization method for ontour traking [72℄ is an example ofgradient asent (or rather, desent) for traking. For eah new image, the energyterms give rise to a system of equations that is solved using LU deomposition toyield a new parametrization of the snake's shape.SSD [51℄ is an iterative method that assumes small motions between frames. Thisallows a Taylor series approximation of the error norm 1jRjPx;y2R(Î(x; y)� I(x; y))2that leads to a system of linear equations. Solving this system yields the motionparameters that take the pixels in region R from the referene image to the image Îthat is best registered with the urrent image I. Other researh on motion estimationmethods relying on image orrelation (suh as [9℄) often inorporates a oarse-to-�neimage pyramid to handle larger motions and allows multiple iterations of gradientasent before onvergene.A robust error norm quanti�es the degree of �t between the image and a warpedtemplate for the ative blob traker in [106℄. The Levenberg-Marquardt method [94℄is employed to ompute the values of the deformation and photometri variables thatminimize this error. These new values beome the traker's state in the next frame.Bradski's fae traker [19℄ and an early version of our olor traking work [95℄are based on pure gradient asent. The similarity to a partiular olor of the pixelswithin a retangular traking window entered at pi is measured; let the enter ofmass of these pixels (weighting more similar pixels more heavily) be p̂i. If the imagedistane jpi�p̂ij > � for some threshold �, pi+1 is set to p̂i and the proess is repeateduntil onvergene on the same image. Within the traking window the moments ofthe olor similarity distribution are omputed to estimate the area and angle of thetraked objet, optionally guiding the size of the traking window.



134Birh�eld's head traker [11℄ elaborates somewhat on this approah. The trakeruses an ad-ho sheme for veloity estimation, and within some onstant size neigh-borhood of the predited head on�guration (inluding loation, sale, and orien-tation) hypothesizes and tests possible head on�gurations. The highest-soringon�guration in this neighborhood beomes the new state of the traker.For generality, we have hosen to use onjugate gradient or Powell's method forgradient asent on the image likelihood and joint image likelihood. A modality-spei� analysis like that arried out in [51, 106℄ may yield a faster tehnique fora partiular objetive funtion, but employing a ommon method for all modalitiesmakes adding new ones muh easier, and we have found that only a modest numberof iterations of gradient asent are usually suÆient to signi�antly improve a statesample.Kalman �lteringP�nder [122℄ does not use a Kalman �lter, but it updates eah blob's parameters byblending the seond-order statistis of the pixels mathed to it with prior knowledgeand an approximate dynamial model. The proedure for doing this is not detailed.Snakes are plaed in a Kalman �ltering framework in [117℄. This allows dynamisto be part of the state estimation proess, as opposed to the purely gradient-drivenapproah of [72℄. However, the dynamis are hosen somewhat arbitrarily. Thesnake-traking systems desribed in [17, 18, 100℄, on the other hand, attempt to learnsophistiated dynamial models of their targets' motions from example sequenes.With suh training the hand trakers in [17, 18℄ and lip traker in [17℄ are able tofollow ertain agile motions than untuned trakers annot, as well as less suseptibleto mistraking due to bakground distrators.In this dissertation we have not foused on building elaborate dynamial models



135beause they are often quite target-spei�|the dynamis of a hand waving do notapply to a knee bending, et. We assert, and the authors of [18℄ onede, thatthis an restrit the ease of reuse and range of appliability of a traking algorithm.Rather, we have strived to reate a framework that an handle multiple lasses ofobjets (ars, people, hess piees, airplanes, et.) undergoing a variety of motions.Notwithstanding the simpliity of the dynamis we do use, we laim that the randomsampling method for measurement generation outlined in Chapter 4 yields robustperformane in the presene of quik aelerations and diretion hanges. Dealingsuessfully with suh phenomena is a large part of what tuned dynamial modelsare designed to handle.Another reason why we have not used detailed dynamial models is beause wewish to emphasize the data assoiation aspet of the traking problem. Though thepapers about them rarely say so expliitly, nearly all of the visual trakers based onthe Kalman �lter use what is alled the nearest-neighbor (NN) method for measure-ment generation. This follows naturally from the use of gradient asent to omputea single measurement for eah new image. As the disussion in Chapter 4 indiates,this approah is only guaranteed to work when the objetive funtion is unimodal. Amultimodal objetive funtion, or image likelihood as we all it, violates the assump-tions of suh algorithms. The PDAF, JPDAF, and Joint Likelihood Filter (JLF),onversely, aknowledge and deal with multimodality expliitly. Doing so obviatesmuh of the need for highly spei� dynamial models whih serve to de�ne thetarget more preisely and thus redue the hane of distration. Relying on well-tuned dynami models is atually similar in spirit to our strategy in Chapter 6 ofusing onjuntions of attributes and onstraints to de�ne the traked objet moredistintively.



136CondensationThe Condensation algorithm is a stohasti traking tehnique that was introduedin [59℄ (a more detailed exposition and further extensions are reported in [62, 60,61, 63℄). Its purpose is to failitate traking in situations where the image likelihoodis non-Gaussian or multimodal. Condensation was originally developed for snaketraking; examples of objets traked inlude a person's head and shoulders, thespread �ngers of a hand against a luttered desktop, and a leaf on a bush [60℄.Reently, it has been applied to other problem areas suh as mobile robot navigation[34℄ and gesture reognition [13℄.The way that the Condensation algorithm works is by approximating the poste-rior probability of the state p(X jI) with a set of weighted samples using the fatoredsampling algorithm of [49℄ (heneforth we subsript by t to indiate time). At timestep t, let there be N samples s(i)t with weights �(i)t suh that PNi=1 �(i)t = 1. Thisset of samples and their weights f(s(i)t ; �(i)t )g is obtained from those of the previoustime step f(s(i)t�1; �(i)t�1)g via a stohasti dynamial model whih makes a preditionwhile inreasing unertainty, plus a measurement proess whih tends to redue un-ertainty. The �rst step is one of seletion: N samples are drawn with replaementfrom fs(i)t�1g, hoosing a partiular s(i)t�1 with probability �(i)t�1. This means that somesamples may be hosen more than one, and some not at all. Seondly, the predi-tive step, or drift, moves all hosen samples deterministially aording to the urrentestimate of veloity, aeleration, and the like. An inrease in unertainty in the ab-sene of information is simulated by di�usion, whih moves eah sample randomlyand independently to its new position s(i)t . Finally, the measurement step assigns anew weight to eah sample by measuring all of their image likelihoods and normaliz-ing: �(i)t = p(It jXt = s(i)t )=PNj=1 p(It jXt = s(j)t ). The samples are initialized before



137traking begins with a uniform distribution and equal weights.If we think of the N samples as omputational resoures, the funtion of theseletion step beomes learer. Its tendeny is to redistribute these assets so thatthey beome sparser in less promising areas of state spae, failitating a more eÆ-ient searh. Over time, the normalization of the weights serves a winner-take-allfuntion by onentrating samples in the viinity of the most likely state, while stilloasionally exploring less-likely regions of state spae. If the target is beomes om-pletely oluded or leaves the image, the samples di�use through state spae sinethere is no measurement reinforement ausing them to ongregate. Widening thesearh in this manner is a good strategy for looking for the lost target to reinitializetraking. Condensation's steady-state traking and lost-target reaquisition make ita robust algorithm for searhing for the global maximum, or MAP state estimate, ofthe time-varying distribution p(X jI).In [59℄, the authors assert that a method suh as Condensation is neessarybeause Kalman �ltering is inadequate for traking in luttered or distrating visualenvironments. Though they do not say so expliitly, they seem to be referring to theNN approah to measurement generation for snakes given in [117℄, whih ertainly isvulnerable to lutter. An NN Kalman �lter onsiders only one alternative to updatethe state for eah image. As we disussed in Chapter 4, this means that there is anon-zero probability of hoosing inorretly, and with inreasing bakground lutterthe hane of making a mistake only goes up. Mistakes an be reovered from,but a suession of wrong hoies usually auses mistraking. The Condensationalgorithm, on the other hand, e�etively maintains multiple hypotheses over severalframes, letting the best one prove itself through ontinued reinforement while theprobabilities of poorer hypotheses dwindle.Beause the sample set ompletely represents the traker's parameters at any



138given time step, Condensation does not expliitly maintain the state of the trakedobjet as the Kalman �lter does. Rather, the set of samples must be queried. Thesuggested method is to de�ne the weighted mean of the samples at time t as theurrent objet \state" in the Kalman �lter sense: Xt � PNi=1 �(i)t s(i)t . This workswell when the posterior density is roughly unimodal, but when there are multiplestrong peaks the samples an be divided fairly evenly between them, rendering this\state" a meaningless ompromise. The argument that Condensation is preferableto straightforward Kalman �ltering is prediated on the presene of multimodality,leaving the would-be traker's ability to obtain a preise state estimate in doubt.What is neessary, as the authors themselves point out in [59, 60℄, is a \mode �nder"that only averages within lusters of samples. They do not give a solution to theproblem, however.The measurement generation algorithm we presented in Chapter 4, whih om-bines random sampling, gradient asent, and enforement of minimum separation,is a kind of mode �nder or lusterer (this is disussed in more detail below). Bysolving the mode-�nding problem at the front end of the �lter yle, we an use aKalman �lter to ahieve a similar level of traking robustness. That the Condensa-tion algorithm glosses over this important step is somewhat surprising: "traking" adistribution is not very useful by itself.As might be expeted from the Kalman �ltering framework that we use, ourapproah to sample generation also di�ers from the Condensation version. We sampleonly in the neighborhood of the target's urrent predited measurement, rather thangenerating samples diretly from previous good samples as Condensation does in theseletion step. This prevents the \loud" of measurements assoiated with a targetfrom separating into multiple groups, thus enforing the notion that a single targetis being traked. Condensation's observation step is its mehanism for preventing



139runaway dispersion of samples.In sum, Condensation is an e�etive approah, but it does not disredit theKalman paradigm. The standard PDAF, by onsidering multiple measurements ineah frame, is onsiderably more robust than an NN �lter in many situations; this hasbeen demonstrated in [5℄ and borne out in our own experiments. Furthermore, theimprovements we have made to the PDAF|espeially the ombination of di�erentmodalities for additional distintiveness|result in a level of traking performanethat mathes that of Condensation for many diÆult sequenes.7.2 Joint TrakingThe history of e�orts to trak multiple objets simultaneously has been relativelybrief, as multiple objets require proportionally more omputational e�ort and thediÆulties of traking single objets have been onsiderable enough to keep re-searhers well-oupied. However, as proessing power has inreased and problemsin single-objet traking have beome more thoroughly mapped, issues stemmingfrom the interations between multiple objets are beginning to attrat attention. Inthis setion we explore the foundations of the methods we use for JPDAF and JLFtraking as well as related e�orts with similar objetives.7.2.1 JPDAFThe Joint Probabilisti Data Assoiation Filter (JPDAF) was originally introduedin [4℄ to deal with problems arising in the domain of traking radar- and sonar-based targets. Sine then, the algorithm has been orreted and extended; we usethe version summarized in [5, 28℄ for our disussion and results. As we noted inChapter 5, the JPDAF is typially applied to non-visual sensors with point-like



140returns that obviate the measurement generation problem. There has been some workon adapting the PDAF to measurements with areas, suh as bright regions in low-resolution infrared sequenes, by omputing onneted omponents after thresholdingin [78℄. An extension of the JPDAF to handle the problem of overlapping andhene merged measurements in infrared images is given in [108℄. However, this workassumes that the intensity of the overlapping area is additive beause the underlyingtargets are exhaust plumes; we annot make this assumption beause we are trakingopaque objets. Other appliations of the JPDAF inlude traking a �xed numberof visual features for struture-from-motion [24℄ and autonomous navigation from aset of landmarks parametrized by range and bearing [37℄.When the validation gates of a set of targets do not overlap, the JPDAF reduesto several PDAFs. Sine many standard traking methods use gradient asent orsome other iterative tehnique that assumes small motions, their e�etive validationgates are relatively small and overlaps our infrequently. Negleting the generalsuperiority of PDA �lters to NN �lters in the presene of greater noise [5℄, thismakes the behavior of standard NN Kalman �lters (suh as [117℄ or Kalman �lteringon the output of an SSD mather [51℄) and the JPDAF similar in many visualsituations. However, overlaps tend to happen more frequently when validation gatesare expanded to handle higher traking speeds, the number of objets being trakedinreases, or onstraints on the targets (suh as with parts of nonrigid or artiulatedobjets) enourage their proximity to one another. If these situations our frequentlyenough or last long enough, the performane of the NN approximation to the JPDAFbreaks down. By negleting joint alulation of assoiation probabilities, two targetsan \laim" the same image feature and their states may onverge inappropriately.Two other data assoiation �lters that elaborate on the PDAF and JPDAF arethe interating multiple model �lter (IMM) [6℄ and multiple hypothesis traking



141(MHT) [99℄, respetively. IMM maintains multiple dynamial models for a singletraked objet and attempts to employ the one that best desribes its behaviorat all times. MHT is similar to the JPDAF but provides a rigorous approah todeiding when there is a new, trakable objet and when to halt traking of objetsthat have left the image or been oluded for a long time. The basi idea behind theinitialization proedure is that measurements not assoiated with any urrent targets(i.e., andidates for unknown targets) are orrelated with eah other from frame toframe to see if any are ontinually found in the same viinity. This strategy an bee�etive, but the omputational requirements of the MHT grow exponentially overtime. An eÆient approximation of MHT is applied to the management of a largeset of appearing and disappearing features for motion estimation in [29℄.7.2.2 Joint Likelihood FilterWhen targets' extents atually overlap or they are in lose proximity, the JPDAF'sombinatorial method of assortment beomes insuÆient to avoid state onvergene.We introdued the Joint Likelihood Filter, a joint traking algorithm that addressesmany of the JPDAF's shortomings, in Chapter 5. A few other researhers haveinvestigated similar approahes to traking multiple interating objets.Rosales and Slaro�, for example, trak multiple rossing humans in [103℄. Theyassume a �xed amera for bakground modeling, allowing individual foreground ob-jets to be segmented as onneted blobs. Olusions are predited and the systemgoes into a di�erent mode during them, using pre-olusion veloity estimates toorretly label blobs after separation. If the targets reverse diretion while they areoverlapping, the system an mistrak.Stau�er and Grimson perform traking of people, ars, and other moving objetsfrom ameras mounted high above ampus plazas and street intersetions as part



142of a surveillane and ativity ategorization projet [113℄. They also use a per-pixelbakground model to identify large, onneted foreground regions as putative objets.An ad-ho, JPDAF-like method assoiates foreground objets with a pool of Kalman�lters that are urrently traking them; further heuristis are used to deide whento spawn or kill a traker in the manner of MHT (though neither JPDAF nor MHTis ited). Aording to the authors, the traker has the most trouble in situationswhere objets overlap one another. One reason for this may be the low-resolution ofmost targets, as the amera has a fairly wide-angle lens and is mounted hundreds offeet away.Beymer and Konolige trak multiple people with stereo and SSD in [10℄. Theyexpet a person to be standing and viewed frontally or from behind, so a salable,narrow retangle is used to represent their size and loation. To trak, a foregrounddisparity map is �rst reated by subtrating the bakground (a �xed amera is as-sumed). For the traked person losest to the amera, the foreground disparitymap is thresholded to isolate the layer around their predited depth. An intensitytemplate is orrelated with the image and adjusted by mathing a binary persontemplate to the disparity map layer. A Kalman �lter updates the traker's stateand the area of the foreground disparity map orresponding to the person's binarytemplate is removed. The proess is repeated for the next farthest-away person, andso on. When the number of pixels are left in the disparity map layer that overlapthe binary template get too low, a person is onsidered ompletely oluded and itstraker is removed. New people are searhed for by orrelating saled binary tem-plates with the depth layers extrated from the deimated foreground disparity map.One problem with the traking system is that it tends to delete and reate persontrakers instead of maintaining ontinuity when there are temporary full olusions.A somewhat more sophistiated approah is introdued in [76℄. Their system



143traks passing ars from a amera mounted on a highway overpass by �tting ontoursto ontiguous regions of motion. Oasionally, one ar follows another losely enoughor hanges lanes in suh a way that a partial olusion ours. Without speial logito deal with this eventuality, the ontour �tter beomes onfused. The relativegeometry of the �xed amera and the road, however, allows the system to deduethat the ar whose bottom edge is lowest in the image is loser to the amera. Theoluded part of the more distant ar is \masked" out of the ontour-�tting operation,yielding better traking auray during the period of overlap.Another system whih is desribed in [98℄ traks the �ngers of a human handwith SSD templates as they bend and blok one another. By mathing a detailed 3-Dmodel to the image, the depth ordering of the palm, thumb, and digits is derived andolusions between them are predited. Those portions of the templates predited tobe invisible are \windowed" out of the SSD alulations, a method similar to whatwe do in the omputation of the omponent image likelihood for textured regions inEquation 5.5.The essential idea of the three preeding approahes is to mask out the oludedpart of an objet in order to prevent the state estimator assigned to it from laimingimage information generated by the oluding objet. In eah ase, preditions aremade about whih targets are oluded and whih should be visible. This type ofinformation sharing about visibility between trakers is harateristi of the JointLikelihood Filter. However, all of the other tehniques that do this use a three-dimensional state on�guration to inform the visibility analysis, whereas the JLFinfers a depth ordering stritly from the image information. This gives the JLFtraker the exibility to handle more visual situations and target types beauseamera movement is not restrited and separate objets that do not onstrain oneanother (as opposed to onneted �nger joints) an be traked.



144Most similar to the Joint Likelihood Filter is the work of MaCormik and Blakein [81℄. Their system traks multiple wireframe and opaque ontours using a vari-ant of Condensation. They append the objet depths to the joint state and imposetransition rules that make hanges in the visibility ordering improbable while the ob-jets overlap. This is more eÆient than onsidering all permutations of overlappingtargets as we do, but it may slow the transition from erroneous initial orderings toorret ones.Among these joint trakers, only [10℄ uses multiple modalities (stereo and SSD)to help disriminate between objets. We examine other researh on traking objetswith more than one attribute in a later setion.7.2.3 Measurement generationThe measurement generation steps of both the single-objet and joint traking yles,as detailed in Chapters 4 and 5, bear a resemblane to lustering methods desribedelsewhere. Reall that for the ith of T independently-traked targets, the PDAFproedure is to sample Ni loations in the measurement spae Zi of eah target, hill-limb some fration of them with the onjugate gradient algorithm, and eliminateless-�t samples within a small neighborhood of more-�t ones. This winnowing proessleaves ni measurements; eah represents one peak in the image likelihood pi(I jX).The measurements an be regarded as exemplars of lusters of samples in the samebasins of attration of pi(I j X) (the rest of whih were removed in the minimumseparation phase).For T idential, jointly-traked targets, the JPDAF proedure is the same exeptthat there is only one ommon group of N samples narrowed to one pool of n mea-surements based on a single image likelihood p(I jX). The Joint Likelihood Filter isin some sense a higher-dimensional version of PDAF: it samples N loations in joint



145state spae X J and lusters them into n joint measurements by hill-limbing. (Wetreat the use of only the best joint event or joint measurement for JPDAF and JLF,respetively, as a step that omes after measurement generation rather than beingintegral to it).At this point an obvious question is: Why use our method instead of running astandard grouping algorithm on the samples before doing gradient asent? For exam-ple, one ommon lustering method for a known number of lusters is the K-meansalgorithm [53, 82℄. Given n data points D = fp1; : : : ;png, the algorithm is initializedby hoosing k initial luster entroids C = f1; : : : ; kg, often as random members ofD. An iteration of the algorithm onsists of two parts: �rst, the ith data point isassigned to the nearest luster j suh that the Eulidean distane between the pointand the luster entroid k pi; j k is minimal. Seond, the loation of eah lusterentroid is updated as the mean of all data points belonging to that luster. Thesetwo steps are repeated until no data points swith memberships between lusters.The K-means algorithm is not optimal and sensitive to the initial luster entroidloations. Therefore, a riterion for the \goodness-of-�t" of a lustering that favorslow within-luster variane and high between-luster variane is often used to seletthe best lassi�ation after several repetitions of the algorithm with di�erent randomseeds. Examples of the K-means algorithm's use in vision inlude [30, 113℄.We do not use K-means in the measurement generation proess for a numberof reasons. First, our gradient asent step is still neessary as its primary purposeis to improve the samples and provide onsisteny in their loations to balane therandomness of their initial loations. Without it, state estimates would have an ele-ment of noise related to the sampling ovariane �X and the number of samples N .Granting the utility of gradient asent, we do not need a general lustering algorithmbeause of the assumption that hill-limbing brings the members of eah luster suf-



146�iently lose together. This is what makes the enforement of minimum separationa valid grouping tehnique. Furthermore, K-means assumes a known number oflusters, but under our assumptions we only know that the expeted number of lus-ters/measurements is T|some variation from image to image must be permitted.Finally, K-means forms lusters exlusively on the basis of proximity in the dataspae, whih is measurement spae or joint measurement spae. The lusters shouldbe based on the underlying struture of the image likelihood funtion, though, inthe sense that samples in the same basin of attration are grouped together. Thereis generally a orrelation between samples that are lose in measurement spae andsamples in the same basin of attration, but these basins are not neessarily spherialas K-means would have them be.Another lustering algorithm often used in vision is Expetation-Maximization(EM) [36, 84℄. EM is a general algorithm for omputing ML and MAP estimateswith inomplete data. A speial ase of estimation with inomplete data is mixturemodels, or estimation with data that is generated by multiple proesses. Assumingthat there are k models and n piees of data, EM simultaneously solves a lassi�ationproblem and a parameter estimation problem. It does this by alternating betweenassigning eah piee of data to the proesses that best explain it (the expetationstep) and hanging the parameters of the models to reet the data membership (themaximization step). Membership may be soft, so that a piee of data an belongto multiple models and exert weight on their parameters proportional to the degreeof its membership, or it may be hard, meaning that a data point an only belongto one model at a time. K-means an be regarded as an approximation to the EMapproah to mixture models in whih the models are the means and ovarianes ofspherial ellipsoids and label assignment is hard.Bregler uses EM to label pixels as belonging to one of k oherent motion-olor



147blobs in [20℄; the output of EM beomes a measurement in a Kalman traking �l-ter. EM is also used to learn a dynamial model for hand traking in [90℄ and formotion estimation in [2, 64, 121℄. An extension is made to EM in [121℄ to try toestimate the number of models; the minimum desription length (MDL) priniplefrom information theory is used in [2℄ to selet an appropriate number of models.EM ould probably be adapted for use in the measurement generation generationproess, but the �t is not perfet. Typially, the data points that are lustered inother vision appliations are image pixels rather than the measurements that we workwith. Without ompletely reworking the traking framework, a more appropriate useof EM might be to run separate instanes of it to obtain a few measurements or jointmeasurements and use these as inputs to PDAF or the JLF. As far as we know,EM has not been applied to snake traking; doing so would likely require a di�erentformulation than the region-based appliations desribed above. One advantageof the approah that we have taken to measurement generation is its generality:one a image likelihood and minimum separation distanes � for novel parametershave been de�ned for a new modality, our lustering method works without furthermodi�ation. Lastly, as with K-means, EM annot estimate the number of lustersby itself.7.3 ConstraintsConstraints have been used in traking in many forms and by many researhers toimprove performane. The notion of eliminating unneessary degrees of freedomand taking advantage of relationships between nearby pixels, edges, and higher-levelvisual units is so basi that SSD and snake methods, for example, are often viewedas fundamental trakers rather than onstrained systems of individual pixels and



148short edge segments, respetively. Nonetheless, onstraint methods have ontinuedto develop for targets beyond simple, rigid objets, and a major motivation for thispush seems to have been the omplexity of the human body. In this setion wereview previous work on inorporating onstraints into motion-based, edge-based,and other kinds of trakers of ompliated, artiulated objets suh as people andtheir faes, hands, and other body parts. Another, more reent, branh of researhon onstraints has foused on exploiting multiple target attributes simultaneously foradditional robustness. We also survey these e�orts. Finally, we briey disuss earlierwork of ours on extending the JPDAF to implement onstraints probabilistially.7.3.1 Multi-part trakingMuh of the previous work on traking omplex objets has not expliitly takledthe data assoiation issue. One line of primarily motion-based traking work, whihis disussed in more detail below, has avoided the assoiation or orrespondeneproblem entirely through a di�erential approah. Many of these e�orts have moreof a avor of pure estimation, rather than the simultaneous problem of estimationand label assignment with whih this dissertation has been onerned. Here thedata assoiation problem is subsumed into the well-known orrespondene problemin optial ow [54℄. For example, Yamamoto and Koshikawa [124℄ trak in-planeartiulated movements of a human arm by relating arm motion to image hange viathe Jaobian and solving the brightness equation using least-squares. Basu et al.[7℄ use a similar tehnique to reover 3-D head motion parameters by regularizingoptial ow.Another line of traking researh has dealt with data assoiation, but somewhatimpliitly by using some form of nearest-neighbor assoiation. Examples inludeKalman snakes [117℄, [18℄, the edge-based arm traking of Gonalves et al. [48℄,



149and many feature trakers used as input to motion estimation or struture frommotion algorithms (examples are given in [29℄). Typially, suh traking systemsmust manage a number of small image proessing windows or validation gates (e.g.,snake segments) within whih multiple andidate features (e.g., edge fragments) maybe deteted. Correspondenes are established by seleting the nearest neighbor toeah predited measurement. By staking many measurements into a large vetorand keeping the state relatively small, the measurement equation of the Kalman�lter beomes overonstrained. The redundany of multiple measurements tends tooutweigh the inuene on the overall objet state of any individual part-measurementmisassoiations due to the NN method.The many researhers who have investigated human body traking, either inwhole or in part, have enountered a few ommon design hoies stemming fromonstraints. One major deision is whether to model the target kinematially ordynamially [123, 102℄. A kinemati model simply spei�es the onnetivity betweenand range of motion of an objet's parts, while a dynami model also onsiders theinuene of external fores suh as gravity and the ground as well as internal foresoperating at joints and points of onnetion. As mentioned previously, our fouson data assoiation has led us to deemphasize dynamis, whih a number of otherresearhers have also negleted [65, 98, 102℄. Moreover, we have found a simplekinemati onstraint model suÆient for a broad range of traking tasks. EÆientmathematial representations for kinemati hain onstraints, whih are essentiallywhat we use in Chapter 6, are given in [22, 65℄.Regarding the atual enforement of onstraints, vision researhers have typi-ally hosen from two methods: �rst, allowing separate parts to have full, possiblyoniting states and using Lagrange multipliers or a similar tehnique to reonilebetween them [68, 123℄; and seond, giving the parts the minimal degrees of freedom



150and deriving their parameters reursively along a hain [22, 65℄.Finally, artiulated-objet trakers an be roughly divided into those that at-tempt to use or reover full 3-D information, those that are only interested in 2-Dinformation (and therefore might assume no olusions or out-of-plane motions),and those that ompute what we all \2.5-D" information. A 2.5-D representationis something like a 3-D representation, but without exat depth estimates. Instead,the sene is approximated as a set of 2-D layers for whih the depth order is known.This has been our approah in Chapters 5 and 6.One example of a 3-D traker is the work of Bregler and Malik on trakingartiulated human motions using a kinemati hain for a linear representation ofjoint onstraints between oherent motion-olor blobs [21, 22℄. A onstrained formof the brightness equation is solved using Newton-Raphson minimization. To aid insegmentation, a bakground model is used. Results show that the torso, arms, legs,feet, and head an be traked during walking from frontal, side, and three-quartersviews under normal imaging onditions. Beause the method is di�erential, it anhave diÆulties with quik movements.Pentland and Horowitz demonstrate full-body traking in [92℄ using a methodsimilar to [124℄. Optial ow alulation is onstrained by a 3-D model onsistingof rigid ylinder-like shapes joined by springs. The Kalman-�ltered state estimateis the result of umulative optial ow and thus is subjet to a build-up of error,limiting the length of aurate traking.Joji et al. trak the torso, arms, and hands of a person with a 3-D kinematihain using a dense stereo disparity map in [65℄. In addition to the body part trakers,the system maintains a bakground depth model. The traker an handle prolongedself-olusion. Wren and Pentland [123℄ trak a person's fae and hands with olorblobs (similarly to [122℄) using a virtual work formulation to enfore onstraints



151on an artiulated upper-body model. Temporary olusions are handled, and theonstraints prevent mistraking when another person's hand is interposed.Gavrila and Davis [45℄ do whole-body traking using four alibrated amerasmounted on a geodesi dome surrounding the subjet. A 3-D, 22 degree of freedom(DOF) model of a person onsisting of linked superquadris orresponding to thehead, torso, arms, and legs is used to predit the loation of edges in the four images;pose spae is searhed for the best overall math. Subjets must wear skintight,ontrasting lothing to assist edge detetion, and edges with no history of motion areonsidered part of the bakground and removed before mathing. Up to two peoplean move and interat fairly freely inside the dome without diÆulty. Proessing isdone o�ine; no data on proessing speed is given.Rehg and Kanade present the DigitEyes system for 3-D hand and �nger trakingin [98℄. A 28 DOF kinemati hain model represents the palm and all �ve digits.A visibility ordering of the digits is generated from the state in order to preditolusions, guiding SSD mathing. Traking is based on gradient desent on the errorfuntion. A distintion between this approah and the Joint Likelihood Filter, as wenoted in the previous setion, is that DigitEyes infers olusion from the state ratherthan the image. This works well for prediting self-olusions when traking a single,artiulated objet, but it is not appliable to the olusions that may our whentraking multiple objets that are not onneted to one another, suh as two people.Olusions in these kinds of situations an, however, sometimes be derived fromstereo or amera alibration information as [10℄ and [76℄, respetively, demonstrate.It is likely that a ombination of state-based olusion predition and image-basedolusion dedution would yield still better results.Morris and Rehg [88℄ do whole-body traking with a 2-D saled prismati model(SPD) that largely eliminates the singularity problems of 3-D kinemati models. The



152authors assert that the artiulated traking problem an be divided into two steps:a registration phase in whih the model is �tted to the image, and a reonstrutionphase in whih 3-D parameters are reovered. They argue that the latter phase isnot always neessary, suh as for gesture reognition, and an always use the outputof the �rst phase in bath form. In the SPD, joint angles are all in the image planeand links hange length for out-of-plane rotations. There is no olusion handling.A ardboard person model for traking 2-D artiulated human motions with on-neted quadrilateral pathes is presented in [66℄. The brightness equation for optialow is augmented to inorporate the artiulation onstraints and solved diretly us-ing a robust estimation tehnique. A three-level oarse-to-�ne pyramid is used toope with relatively large motions. Examples given are of traking the thigh and alfof the foreground leg during walking motions parallel, orthogonal, and at 45 degreesto the image plane. Large motions from frame to frame an ause the gradient asentmethod to mistrak, and olusions are not handled.P�nder [122℄ maintains a bakground model and lassi�es foreground pixels asbelonging to one of seven body part blobs (fae, hands, feet, shirt, and pants) basedon a ombination of olor similarity and spatial proximity to the blob enter. A mor-phologial growing operation is used to ensure onnetivity within blobs. Olusionsare handled as all-or-nothing blob \disappearanes," and the system an bootstrapitself onto a person entering the image. Multiple people in the sene an onfusetraking.Kakadiaris et al. desribe an algorithm for traking in-plane, artiulated arm and�nger motions as it dedues the number of rigid parts in [68℄. The edges of the arm or�nger are found against a ontrasting bakground, and initially a single deformable,physis-based model is �tted to them. When the model bends far enough, the �ttingerror and disontinuity in the edge urvature derivatives trigger a deision to split the



153model into two parts onneted by a joint. Fuzzy lustering is used to share pointsin the border zone between parts. A Kalman �ltering framework helps mitigate thee�et of spurious edges introdued by partial olusions.Rohr models a person as a set of onneted ylinders with ellipti ross setions in[102℄. Medial data was used to obtain a one-variable phase angle parametrizationof the internal on�guration (joint angles and limb positions) of the model for awalking motion parallel to the image; the horizontal image position of the bodyentroid is estimated separately. Assuming a �xed, alibrated amera, a Kalman�lter predits the loation of straight edges in the image and omputes the degreeof math. Analogous to our argument against a too-spei� dynamial model, thekinemati model here is overspeialized. This traker annot handle anything butone person walking in pro�le at a onstant veloity.Reynard et al. investigate oupling frontal mouth and head snake trakers in [100℄as a method for preventing mistraking of the mouth during lateral head movements.Without the oupling, the mouth traker depends primarily on vertial edges at thetop and bottom of the lips and therefore su�ers from the aperture problem duringhorizontal motions. When linked with the mouth in a ombined Kalman traker,however, the strong horizontal edges on the sides of the head silhouette ompensatefor this vulnerability and allow a full range of motion.7.3.2 Multi-attribute trakingInvestigations into exploiting multiple di�erent modalities for traking have beomemore ommon in the past few years. This an be asribed in part to the additionalomputational overhead entailed by ombining methods, and partially to the ten-deny of some researhers to ontinue re�ning the single-modality tehniques withwhih they are most familiar. Even those systems that do rely on di�erent modalities



154rarely use them at the same time. Most often, a set of heuristis arbitrates betweenwhih modality to employ or favor at any given time.Darrell et al. ombine stereo, olor, and a fae detetion module to trak frontalviews of multiple people's faes and upper torsos in [31℄. No Kalman �lter is used;the state of eah person is updated using a nearest neighbor approah after iden-tifying andidate person loations. Candidate loations are found by running eahof the three modules separately to �nd good range pro�les, skin olor, and faemathes, respetively. These separate andidates are ranked, with preferene givenin dereasing order to fae mathes, overlapping range and olor andidates, rangeandidates, and olor andidates. This is in ontrast to the Constrained Joint Likeli-hood Filter outlined in the previous hapter, whih always looks for onjuntions ofthe attributes it is using and does not favor one over another. The system does notreognize the ourrene of olusions per se, but rather waits for people to separatebefore using the fae detetor to relassify them.Birh�eld uses olor and intensity gradients for head traking [11℄. The olor andedge math riteria are desribed above; to ompare these two soures of informationat a ommon sale, the two independent math formulae are onverted into perent-ages by dividing by their range of possible values. The e�et of this step is similar tothe funtion of �tregion; �hregion, and �snake in the omponent image likelihoods givenby Equations 5.4, 5.6, and 5.8, respetively.Other examples of multi-attribute traking inlude Bregler's inlusion of botholor and motion parameters in a multivariable Gaussian representing a blob [20℄.This impliitly handles the di�erenes in sale between the two quantities. Mae etal. use optial ow plus ontours found by edge detetion to improve traking inambiguous visual situations [83℄, and P�nder [122℄ ombines the output of the olorblob segmenter with a ontour analysis step in a heuristi way.



155Perseus, a vision system mounted on a mobile robot, omputes multiple featuremaps (olor, motion, and disparity) to �gure out where a person is pointing [67℄.When the robot is not moving, bakground subtration is used to �nding the person;when it is moving, stereo disparity is used (after eliminating pixels with of knownoor olor or bright enough to be eiling lights). A geometri analysis is then used todetermine where the arm is; arm-�nding fails if the hand is not away from the body.The di�erent ues are not used simultaneously, but rather in sequene depending onertain onditions.The Inremental Fous of Attention (IFA) algorithm [118, 119℄ is a system of de-ision riteria for swithing between oarse-to-�ne traking methods (motion, olor,SSD) in order to maximize auray and reover quikly and robustly from mistrak-ing. Again, the di�erent methods are used sequentially rather than simultaneously.7.3.3 Constrained Joint Probabilisti Data Assoiation Fil-terIn previous researh [96, 97℄, we augmented the JPDAF to inlude a method ofenforing onstraints probabilistially, whih we alled the Constrained Joint Prob-abilisti Data Assoiation Filter (CJPDAF). The CJPDAF works by quantifyinghow well the relationships between measurements �t the desired onstraints betweentheir assoiated targets. Introduing onstraints into the state update proess at thispoint a�ets the omputation of the assoiation probabilities, whih are determinedin Equation 5.1. By enoding a probabilisti preferene for ertain part arrange-ments, the e�et is to favor those interpretations of the data that best �t the modelrather than fore the target state into �tting it (whih is what the Constrained JointLikelihood Filter (CJLF) does). The only examples of onstraints used in [96, 97℄ are



156rigid links with no rotation or saling, but a funtional de�nition of the inter-partonstraints in [97℄ allows for more ompliated relationships. The CJPDAF is often auseful, exible way to introdue onstraints into a multi-part traking system, but bynot imposing them until after the measurement generation step, there is a possibilitythat the independently-generated measurements annot be arranged in a joint eventthat losely satis�es the onstraints. By jointly generating measurements that meetthe onstraints from the very beginning of the proess, however, the CJLF proves tobe muh more robust.



Chapter 8
Conlusion
This dissertation's primary ontribution is its demonstration of the importane of rea-soning about orrespondenes between trakers and image data in order to ahieverobust vision-based traking. In arguing that standard estimation tehniques areoften inadequate for real-world traking tasks, we have atalogued a number of dis-ruptive visual phenomena suh as agile motions, olusions, and distrations thatmake traking diÆult and presented a series of new methods to ounterat them.One innovation of this work is the analogy we have drawn between visual olu-sions and distrations and the problem of no or multiple measurements that algo-rithms suh as the Probabilisti Data Assoiation Filter (PDAF) and Joint Proba-bilisti Data Assoiation Filter (JPDAF) [5℄ were intended to solve. Though these�lters were originally developed for disrete radar and sonar traking appliations,we were able to suessfully adapt them to visual tasks by de�ning measurementssuitably and devising a preproessing step to extrat them. Run head-to-head on thesame image sequenes, the vision-based traking algorithms thus reated exhibitedmarkedly better performane in the presene of lutter and when traking multipleidential objets than many urrent ommonly-used methods.157



158Our tehnique for generating the measurements used as input to these data as-soiation �lters is also notable. We have found that a ombination of random sam-pling and gradient asent for extrating a disrete set of high-likelihood hypothesesabout harateristis of the target's image projetion onsistently yielded aurateresults. The identi�ation and onsideration of a group of alternative hypothesesin the neighborhood of the traking �lter's predition allowed ambiguities to be re-solved over multiple frames and helped to quikly reloate the target when it movedwith agility. This proedure is also general enough that it an be applied to any newtraking modality de�ned in the manner of the examples in Chapter 3.We have also expliated shortomings in the JPDAF and remedied them witha more eÆient and sophistiated method, the Joint Likelihood Filter (JLF). Byrelating the exlusion priniple at the heart of the JPDAF to the method of maskingout image data [76, 98℄, the JLF handles olusions between traked objets. Ourextension of this method to olletions of objets of di�erent modalities suh as olor,shape, and appearane is original. The approah we take to olor representation andregion geometry for homogeneous regions is our own. Moreover, though others haveused three-dimensional state parameters to assist with olusion reasoning, the JLF'sinferene of the depth ordering of traked objets during overlaps from image dataalone is novel.Finally, we augmented the JLF method to allow low-level trakers to be omposedvia part and attribute onstraints in order to speify more omplex targets. This algo-rithm, the Constrained Joint Likelihood Filter (CJLF), redues the vulnerability of avision-based traker to unmodeled distrations and olusions by e�etively de�ningits target more distintively. Although geometri onstraints are a well-establishedmethod for inreasing robustness, exploiting multiple modalities simultaneously totrak a single objet|espeially three, as we do|is fairly new, and the union of



159these two approahes is learly an advane. The way that the CJLF framework doesso is made more useful by its exibility and extensibility: target models an be easilyspei�ed and new modalities an be added straightforwardly.The main laim that we make about these new algorithms is that they o�er qual-itative improvements in traking performane over existing methods when the visualdisruptions we enumerated are present in an image sequene. That is, by modelingdistrations and olusions as we do, we add a novel apability that standard teh-niques lak and allow traking to proeed suessfully where it otherwise it is proneto fail. Suh a laim is distint from one of simple quantitative superiority, whih,for example, might assert that the expeted error between state estimates and theground truth is smaller for one algorithm than another. The latter laim followsfrom the �rst, in a sense, but here we have foused on the inability of standard al-gorithms to ope with ertain phenomena as an obstale to their more widespreadappliability.We took several approahes in this dissertation to demonstrating the eÆay ofour traking methods. First and foremost, we have argued through hypothetial ex-amples and derivations that, for example, not arrying out the measurement proessjointly and/or exploiting onstraints between trakers when they apply leads to aninorret formulation of the posterior probability on the state given the images ob-served. Correspondingly, we have sought to show how the JPDAF and JLF addressthe �rst problem through the image likelihood and how the CJLF addresses the se-ond through the prior on the state. These probabilisti arguments demonstrate whythe visual disruptions lassi�ed onstitute signi�ant violations of the assumptionsof standard traking tehniques.We also buttressed this theoretial approah with empirial evidene obtainedfrom traking experiments on real image sequenes. By attempting to trak in vari-



160ous situations with standard tehniques, we on�rmed the detrimental onsequenesof visual disruptions. Noise, interations between multiple traked objets, and in-suÆient onstraints between linked parts frequently led to mistraking as predited.Conversely, when an appropriate new algorithm was employed, the inidene of mis-traking was greatly redued. The �gures that make up the bulk of the data disussedin eah hapter's results setion were seleted as representative of many head-to-headruns. Repetitions were performed both to gauge the onsisteny of the results for mi-nor parameter variations and to give a better statistial piture when the algorithmshad a stohasti omponent. In several ases, we have summarized the results of abath of runs by the fration in whih the objet was suessfully traked. The widedisparities in performane quanti�ed in those examples are harateristi of what weobserved over the entire orpus of experiments, but regrettably we did not do thesame preise tabulation for all of them.The way that we hose the image sequenes in this dissertation points up ageneral diÆulty with omparing traking methods. While we strived to inludesequenes that had di�erent kinds of objets, motions (both of the objet and theamera), and bakgrounds in order to put a range of stresses on the various algorithmsand modalities, there is still a question of how representative the sequenes are.Addressing this issue is more straightforward when the problem domain of the trakeris known and limited, but we have tried to keep our framework general. What isreally alled for is in some sense a basis set of sequenes. The theory behind whatwould go into suh a set is still embryoni, however, and the traking ommunityhas yet to even ahieve onsensus on any ommon set of sequenes suitable foromparison. Moreover, when using real-world video lips it is hard to ontrol enoughof the visual variables to support a laim that the suess or failure of traking isdue to one partiular fator. This diÆulty is ompounded by the fat that where



161good sequenes are available, it is often laborious if not impossible to extrat groundtruth from them. Syntheti sequenes along the lines of what we used in Figure 4.8would seem to remedy this problem, but whether photorealism is neessary and howappliable results obtained on syntheti sequenes are to real-world situations areissues that demand more study.In the following setion, we will disuss some other questions that have arisen inthe ourse of this researh whih we plan to investigate further.8.1 Future workThere are a few major diretions whih we see as promising for improving and ex-tending the work presented here.Additional modalities An obvious next step in our researh is to implement moretraking modalities within the framework desribed for single objets in Chapter 3and joint objets in Chapter 5. Additional desriptive attributes would further in-rease the distintiveness of any traked objet, boosting the reliability of trakingin more diÆult visual situations. Moreover, when limited proessing power doesnot allow the use of all available modalities, areful seletion of the most useful onesat hand is neessary. A larger set of methods with omplementary strengths andweaknesses would a�ord better overage in situations where the objet's olor, ap-pearane, or shape alone are diÆult to disern due to lighting, resolution, or otherlimitations.A number of well-studied andidate modalities suh as motion and stereo arereviewed in Setion 7.1.1. Some other novel traking ues also seem worthy of inves-tigation. For example, one interesting ue is texture in a statistial sense. Suppose



162that we would like to reognize and trak an objet overed with vertial stripes,wavy lines, spots, or some other repetitive pattern. De�ning a texture proedurallyor parametrially as opposed to the stati referene image of a textured region wouldmake for a more onise, view-insensitive objet desription. Moreover, lasses ofobjets (e.g, zebras) instead of only single instanes (e.g., this zebra) ould be har-aterized, and single-instane traking would likely be more robust. Zhu et al. dotexture modeling by piking a basis set of �lters using information theory [126℄ andEfros and Leung [39℄ synthesize textures from a sample using a non-parametri teh-nique. A orollary of suh results whih might lead to a quite versatile and powerfultraker is a more omplex texture omparison funtion than simply subtrating theintensities of orresponding pixels. However, these texture modeling methods areurrently too omputationally intensive to be feasible for traking.Modality omparison A natural question to ask about ues onerns their ef-�ay. Thus far we (and many other researhers, it seems) have relied solely onintuition and empirial observation to guide the hoie of whih traking modalityworks best for a given image feature. Furthermore, our use of MPEGs for input hasgiven us the luxury of onluding (as have others|e.g., [31℄) that more modalitiesare always more helpful. With a large group of ues available and a real-time taskthat plaes hard limits on omputational resoures, however, it beomes paramountto have a rigorous tehnique for seleting one best ue or a minimal subset of uesthat satisfy the task's requirements eÆiently. What is neessary is a deision rite-rion that aounts for the harateristis of the target being traked and the imageonditions at any given time and makes a reasoned hoie about the superiority ofa textured region vs. a homogeneous region vs. a snake vs. any other modality.As a orollary, we would like to be able to predit when traking human faes, for



163example, how muh of a performane improvement would be gained by augmentinga homogeneous region with a textured region instead of, say, adding a snake. Suhinquiries are essentially onerned with quantifying distintiveness.One possible basis for a theory of omparing traking modalities is some sort ofmeasure for our on�dene that the estimate returned by the traker is a good one.Con�dene in an estimate may stem from a number of fators, but a very importantone is how muh better (in a probabilisti sense) it is than the alternatives. Howmuh does the estimate stand out as the solution rather than a solution? If we viewthe visual ues as akin to hannels arrying messages of varying helpfulness about thevalue of the stateX, information theory provides a prinipled approah to quantifyingthese intuitive qualities. In partiular, Fisher information [27℄ is promising as abridge between information theory and estimation. The Fisher information J is alower bound on the variane of an unbiased estimator of a set of parameters of aprobability density. Here the parameters are ontained in X, the probability densityp(X j I) is onditioned on the urrent image I, and the estimator is one of theandidate traking methods. As a yardstik for an estimate's repeatability, JA fora partiular modality A an be regarded as a maximum on�dene measure in thatmodality's traker for a given set of state parameters and image onditions. Thismakes it relevant for omparing the relative e�etiveness of various traking methods.There has been some previous work on the theory of visual ue integration usingFisher information and other information theoreti approahes. Yuille and B�ultho�[125℄ develop a theory about fusing binoular stereo and monoular depth ues formotion parallax, as well as shape from shading and texture. Blake et al. [15℄ use theompression and density of texture elements on a surfae as ues for estimating its tiltand slant in omputer-generated images, analyzing the usefulness of eah aordingto its Fisher information. However, there has been no researh to date on employing



164Fisher information to selet and integrate ues spei�ally for traking, so this mightbe a fruitful avenue.Traker initialization and termination Another area whih deserves more at-tention is the initiation and termination of traking. Currently, a user points andliks with a mouse to set a traker's initial state parameters|e.g., by hoosing lo-ations along a snake's ontour or indiating a region's image position, angle, width,and height. The user then presses a button to start traking, whih ontinues untilthe end of the MPEG is reahed or the program is killed. There are several reasonswhy it would be bene�ial to have traking begin and end without user intervention.The �rst is onveniene. The ommenement of traking an be easily automatedwith sript �les for MPEGs, but repeatedly piking the fae to be traked in a liveimage sequene, for example, is tiresome. A higher-level proess that looks every-where for faes and starts traking in loations with good mathes would obviatethis hore. A seond reason is that traked objets sometimes leave the frame orare ompletely oluded for long strethes of time. Reognizing suh absenes wouldprevent erroneous state estimates from being promulgated, and re�nding lost objetsto resume traking would allow a traker to run for longer periods and reover fromlutter for whih this dissertation's methods are insuÆient. Suh skills have beentermed post-failure robustness [118℄. Lastly, an ability to disover image featuresthat math the target model but have not been pointed out by the user ould alsoidentify persistent distrators. As a result, distrators ould be treated as trakableobjets in their own right and dealt with using the JPDAF or Joint Likelihood in-stead of approximating them as noise or minimizing their ourrene with additionalmodalities.The high-level searh proess posited for initiating a traker assumes the exis-



165tene of a detailed model of the sought objet's olor, appearane, or shape in orderto test hypotheses. A major di�erene between suh a searh and the traking mea-surement proess detailed in Chapter 4 is the markedly greater breadth and heneomputational load required for initialization. The prior on the state p(X) is onsid-erably more di�use beause there is no predition from the previous frame to narrowthe fous. Close �ts to the objet model must be subjeted to a thresholding stepto deide whether to atually start a new traker. As for termination, a separatemodule would monitor the health of existing trakers in order to determine whenthey no longer have suÆient image orroboration to ontinue.The Condensation algorithm [59℄ starts traking with a spread-out prior and on-tinually shifts resoures away from less likely areas of state spae to more promisingones, so in a sense automati initialization and termination are built in. Neverthe-less, the same failure to make a disrete deision about how many targets are beingtraked whih we referred to in Setion 7.1.2 also means that there is no de�nitedeision as to whether a new target has appeared or an old one is gone. In on-trast, multiple hypothesis �ltering [5, 28℄, whih we overed in Setion 7.2.1, is adata assoiation tehnique similar to the JPDAF that is very expliit about theseevents. It automatially detets new targets and eliminates obsolete targets with asophistiated methodology that takes several frames to make a deision. However,it is quite expensive omputationally and seems to have only been applied in visionto �xed-size, SSD-type features [29℄.The expense of the broad searh neessary for automati initialization is onlyompounded by the high-dimensional states resulting from the kinemati onstraintsintrodued in Chapter 6. The strategy of Gavrila and Davis in [45℄ is one interestingapproah to improving eÆieny. They searh pose spae hierarhially for bodyparts: �rst the torso, then the arms, then the legs. Their intuition is that the torso



166is easier to loate beause it varies less in position and orientation, and an then\anhor" the searh for attahed limbs. This is somewhat similar to the partitionedsampling tehnique used by MaCormik and Blake in [81℄ to redue the numberof samples needed for Condensation traking of objets or groups of objets withhigh-dimensional states. The basi idea of searhing for objet parts in desendingorder of distintiveness would likely boost the performane of ordinary traking aswell.A problem losely related to automati initialization is how to �nd features worthmodeling and traking in the �rst plae. This version has arisen in struture-from-motion problems [29℄ and surveillane tasks [103, 113℄. In this ase there is nospei� representation of the target per se (like a referene image of a fae or a skinolor model), but rather only an idea of an ideal target's properties. The hief suhproperty used by researhers is sometimes alled \trakability," a virtual synonymfor distintiveness. Shi and Tomasi establish strong vertial and horizontal gradientsas a trakability riterion for SSD features in [109℄; motion-sensitive trakers usuallylook for a ompat, onneted group of strongly-hanging pixels [103, 113℄. Fisherinformation is used in [115℄ to derive a goodness measure similar to that of [109℄ bysearhing for �xed-size regions that maximize J. A proedure suh as this might begeneralizable to other modalities.Model learning It would also be advantageous to ultimately inorporate learninginto our traking framework. Learning a�ords an opportunity to aurately tuneobjet dynamis and build more re�ned models of appearane, olor, kinematis,and so on. The trained snake trakers in [18, 100℄, for example, obviously reatbetter than their untrained ounterparts to agile motions. Improving a traker's skillsontinuously through an online version of their learning algorithm would be ideal.



167Another bene�t of learning is that rough models entered by hand an be augmentedor orreted over time, and long-term modi�ations to the traked objet suh asbeard growth or hanges in lothing an be aommodated adaptively. The systemin [68℄ initially models a human arm as a single, exible objet until it observes alarge enough bend to dedue that there are atually two parts (the forearm and upperarm) joined at the elbow. An elaboration of this kind of approah might be able to�rst approximate a whole human body as a single retangle and gradually parse outthe struture of the torso, limbs, and head, avoiding the expliit spelling-out of thekinemati hain that must urrently be done.Code optimization A �nal onsideration for future work is a tehnologial one:the implementation of the traking algorithms desribed in this dissertation ouldlikely be sped up greatly with a onerted e�ort to optimize ode. We have notbeen onerned as muh with maximizing speed as with improving general trakingperformane, and this is reeted in the running times of our algorithms, whihrange from near real-time (de�ned as traking alulations keeping pae with a 30frames-per-seond stream of 640 � 480 images) to seonds per frame on a 650 MHzPentium III. Nonetheless, besides failitating more eÆient testing and omparisonof methods, a reliably real-time implementation is a prerequisite to any real-worldappliation of the full spetrum of our methods.Speed depends on a number of fators, most importantly the number and type ofatomi trakers, iterations of gradient asent allowed, and number of state samplesexplored. Pro�ling the ode shows, unsurprisingly, that a major portion of its timeis spent doing image proessing in repeated evaluations of p(I jX) for di�erent statesamples. Using the SIMD apabilities o�ered by the MMX omponent of the PentiumIII hip, whih we do not, would ut down per-frame omputation time a great deal.



168For example, benhmarks for the Intel Image Proessing Library (IPL) [57℄ indiateas muh as a 500% improvement going from non-SIMD to SIMD versions of ommonimage operations suh as onvolution, zoom, and addition.Another intriguing possibility is suggested by the work on ative blob trakingin [106℄. They use the speialized 3-D hardware of an OpenGL graphis ard toquikly synthesize expeted images of a deformable traked objet from its state.This ability would be a great help to us in performing, for example, the aÆne warpwith bilinear interpolation on the referene image IR that is part of the image likeli-hood for textured regions. The reent OpenGL 1.2 spei�ation [110℄ inludes someimage proessing funtions akin to those in the Intel IPL, making it likely that 3-Dgraphis ards will soon provide even more hardware that an be exploited for trak-ing. Moreover, our use of MPEGs instead of live input in order to failitate exatomparisons auses some performane degradation due to the extra load on the CPUof software MPEG deoding. Most urrent graphis ards an do this deoding inhardware.8.2 CodaA guiding motivation throughout this thesis has been that distrations, olusions,and sudden movements pose a major hallenge to the reliability of vision-based trak-ing for both people and mahines.How do people ope? The basi neurobiology of traking onsists of eye (andultimately head) motions aimed at keeping the image projetion of the objet ofinterest on the fovea, the high-auity enter of the retina that subtends about 1Æ ofthe visual �eld [71℄. Smooth pursuit movements of both eyes, whih follow targetsat moderate speeds, are puntuated by quik saadi movements. Saades \ath



169up" when target motion is too fast or disontinuous and also serve to shift attentionto interesting stimuli in the periphery of the visual �eld. Pereptions of large objetssuh as human faes that do not �t within the fovea seem to be onstruted fromrepeated saades between smaller areas of interest [71℄.A omprehensive theory of how the visual system makes attentional hoies andats upon them is, of ourse, still nasent. Nonetheless, these �ndings agree withthe intuition that as we trak a omplex objet suh as another human being, aonstant series of adjustments must be made to where we are looking and what weare looking for in order to ompensate for unpreditable motions, disappearanes, andambiguities. Consider the friend-in-a-rowd senario alluded to in the �rst hapter.To follow our friend we an try to �xate on their fae, but the similarity of thesurrounding faes may prompt quik, ontinual sans of the viinity to insure thatthere have been no mix-ups. If this is too onfusing, we might attend to our friend'shair olor as long as it is distintive enough. When the friend's head is bloked, ourattention shifts to their still-visible shirt. If they are entirely obsured, we antiipatetheir reemergene at some predited spot or simply searh that area of the imageuntil they are refound. The sum total of this pathwork of strategies is the humanability to maintain visual ontat with a target despite many severe disruptions.Although we make no laims that our methods are in any way onsonant withthe mehanisms of the human visual system, we have drawn inspiration from them.Responding to the problems detailed above, this dissertation has taken the view thatunless traditional estimation tehniques are bolstered with expliit reasoning aboutthese phenomena, traking performane in many real-world situations inevitably suf-fers. The philosophial touhstone of our work has been that robustness an be in-reased by exploiting multiple soures of information simultaneously. This approahis manifested in many innovative aspets of our framework: e.g., individual trakers



170avoid ommitment to a single attrative feature to defend against noise, groups oftrakers share information about orrespondene hoies to avoid interfering withone another, and diverse geometri and qualitative ues are integrated to inreasedistintiveness. The value of these methods is demonstrated by their superior trak-ing performane on many objets in the presene of diÆult lutter and partialolusions.
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