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Vision-based tracking is a promising technology for tasks such as human-computer
interaction and mobile robot navigation. However, distraction and occlusion are
major obstacles to robust performance. Though tracking is often framed as strictly
an estimation problem, these phenomena also engender a correspondence problem
that must be addressed. Without careful consideration of what image data, if any,
to associate with a tracked object from frame to frame, the estimation process can
become biased and the object lost.

In this dissertation, we will describe a framework that incorporates and indeed
emphasizes explicit reasoning about data association as a means of improving track-
ing performance in many difficult visual environments. This framework is built
around a hierarchy of three tracking strategies that result from ascribing ambiguous
or missing data to the following causes: (1) noise-like visual occurrences; (2) persis-
tent, known scene elements (i.e. other tracked objects); or (3) persistent, unknown
scene elements.

First, we introduce a randomized tracking algorithm adapted from an existing
probabilistic data association filter (PDAF) that is resistant to clutter and follows
agile motion. The algorithm is applied to three different tracking modalities

homogeneous regions, textured regions, and snakes—and extensibly defined so that



the inclusion of other methods is straightforward.

Second, we add the capacity to track multiple interacting objects by adapting a
joint version of the PDAF to vision. This algorithm oversees correspondence choices
between same-modality trackers and image features to ensure that they are feasibly
distributed. We then derive a related technique that allows mixed tracker modalities,
handles object overlaps, and deduces depth orderings.

Finally, we represent complex objects as conjunctions of cues that are diverse both
geometrically (e.g., a person’s face, hands, and torso) and qualitatively (e.g., shape,
color, and texture). The use of rigid and hinge constraints between part trackers
and multiple attributes to describe individual parts renders the whole object more
distinctive, reducing susceptibility to mistracking.

Models for tracked targets can be flexibly specified; results are given for a number

of objects, including people, cars, airplanes, microscopic cells, and chess pieces.
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Chapter 1

Introduction

If you dare not trust that you see, confess not that you know:

If you will follow me, I will show you enough . ..

William Shakespeare
Much Ado About Nothing

Act 3, Scene 2

To follow an object with the eye to track it is virtually a subconscious activity
for a person most of the time. Only under very difficult circumstances is one aware of
it taking any effort at all: while watching the ball carom around energetically during
a pinball game, perhaps, or trying to pick out a friend’s face as they make their way
through a crowd. Without attempting to enumerate every reason that tracking is
harder in these situations, a few factors stand out. The speed of movement of the
ball, its frequently unpredictable changes of direction, the proximity of similar faces
to the friend’s face, and the constant disappearances and reappearances of their body
behind others all seem to conspire to interrupt what is normally a smooth tracking

process.



The history of artificial intelligence amply shows, of course, that even skills which
come naturally to people are rarely straightforward to impart to computers. Nonethe-
less, there is a strong motivation to study visual tracking and its attendant issues,
if only because of the many useful tasks that computers and robots could carry
out with just a fraction of the human visual system’s capabilities. For instance,
many researchers have been interested in perception for autonomous vehicles, such
as driverless cars that follow lane lines and detect other cars as they negotiate high-
ways [35, 116]. Success in this area would have obvious ramifications for public
transportation and shipping. Other have studied mobile robots that visually avoid
obstacles and locate landmarks to navigate within buildings, allowing them to make
deliveries or give tours [25, 33, 55]. Another focus of investigation has been on gath-
ering information from passive, ground- and air-based cameras for surveillance and
activity classification tasks such as security, military reconnaissance, and studying
pedestrian and vehicle traffic patterns [79, 113]. The human body has also been the
subject of much work on analyzing gestures, facial expressions, and other motions
in order to drive character animation, understand sign language, serve as input to
games and other software, and recognize actions [32, 40, 44, 104, 112, 122]. Finally,
a number of ongoing projects seek to combine disparate tracking skills in an effort
to endow “intelligent” houses with an awareness of their occupants and an ability to
interact with them [73, 107]. These examples represent just a small sample of the
diverse potential applications of visual tracking research.

Traditionally, the emphasis in framing the visual tracking problem has been on
estimation [86, 94]. Given a set of data that we wish to represent concisely with
a parametric model, an estimator is a procedure for finding the parameters of the
model which in some sense best fits the data. In tracking, the parameters (known

collectively as the state) are typically time-varying, salient characteristics of an object



Figure 1.1: Multiple distractions complicate tracking

in the field of view. Common choices include location in the image, depth along the
camera axis or image scale, orientation in the image plane or three dimensions (3-D),
velocity and/or acceleration of any of these quantities, shape (possibly allowing for
nonrigid deformation), surface properties like color, and so on. The data available
to guide estimation are, theoretically, all of the images observed up to the present
time. However, unless the projection of the object occupies the entire image area, the
object model is generally only sufficient to explain a fraction of the data. Therefore, a
standard procedure is to segment out the portion of the image data which corresponds
to the object and use it alone for estimation. This assumes that the object’s image
projection can be unambiguously discriminated from the rest of the image.

This basic approach has led to much fruitful research on tracking topics such as
inferring 3-D structure from 2-D images [106] and dynamics [18]—how to keep up
with a moving target by predicting where it will be next. These kinds of problems
are challenging in their own right. But as visual tracking moves out of the laboratory
and into the real world, controlled conditions disappear and it becomes considerably

more difficult to accurately identify an object’s image projection. Unsurprisingly, the



same visual phenomena noted above which are problematic for people also interfere
with estimation: agile motion, distractions, and occlusions. We define agile motion
as a sustained object movement or acceleration that exceeds a tracker’s dynamic
prediction abilities. Its occurrence can undermine the estimation process because it
renders the putative location of the object’s image projection uncertain, complicating
efficient segmentation. A further obstacle to clear-cut segmentation is a distraction,
or another scene element which has a similar image appearance to the object being
tracked. For example, the numerous penguins in the rookery shown in Figure 1.1
hinder any effort to track just one bird. A naive penguin segmenter may return
multiple penguin-containing image regions or it may isolate a unique-but-wrong one.
Either outcome will cause the estimator to work from an incorrect data set. Finally,
occlusion results when another scene element is interposed between the camera and
the tracked object, blocking a portion of the object’s image projection. This results
in incomplete data or no data being supplied to the estimation algorithm.

These phenomena are worrisome because of their potential to bias a tracker’s
estimates by polluting or decimating the data. Moreover, if a visual disturbance
lasts too long or is too severe, the estimator/tracker can effectively become confused
and lose track altogether of the object. By mistracking, we mean that some criterion
for the quality of the state estimate over the duration of the tracking task is not
satisfied. Such a criterion might be that the difference between the state estimate
and the ground truth state (insofar as it is knowable or humanly assessable) is never
greater than a certain threshold, or at least for no longer than a preset length of
time. Since visual disturbances are ubiquitous in everyday situations, methods to
overcome them are critically important if visual tracking is to be robust.

The aim of this dissertation is to analyze some of the essential causes of distur-

bances in tracking and outline a comprehensive computational framework for deal-



ing with them. At the most fundamental level, it seems clear from our exposition
that these problems require an approach that combines both estimation and corre-
spondence. Correspondence is the question of how to determine what image data to
properly associate with the object being tracked and therefore to base the estimation
process on. We contend that by combating the various forms of the correspondence
problem that they engender, we will be able to counteract many of the negative
effects of agile motions, distractions, and occlusions on accurate estimation.

We will tackle these problems with two broad approaches. First, we will describe
several data association [5] versions of the Kalman filter [69], an estimation technique
commonly used for visual tracking, that are specially constructed to handle certain
classes of these occurrences. Two of the data association filters that we present are
existing algorithms from the radar and sonar literature that we have made nontrivial
modifications to in order to adapt to vision. We will also introduce two other, more
sophisticated filters, that are novel. The standard Kalman filter requires tinkering
because in order to assure an optimal estimate it assumes a Gaussian distribution
on target observations. Thus, it may fail when this assumption is violated, as is the
case when a distraction or occlusion induces a multimodal distribution on target-like
observations.

The second part of our strategy is a method of defining a tracked object more
distinctively so that visual disruptions happen less frequently and with less severity.
Distractions are defined as image features that are similar to the target, so a more
specific target description (e.g., “red triangle” instead of just “red”) tends to reduce
the number of such features. A de facto description of an object is given by the
set of modalities appearance, color, shape, etc. used to track it, leading us to
employ conjunctions of modalities for greater robustness. Geometric relationships

such as “triangle-below-circle” instead of just “triangle” can also be added to an



object description to boost distinctiveness. The overarching aim of these measures is
to reduce or eliminate the incidence of non-target-originated observations and thus
the degree to which the assumption of a Gaussian distribution is not met.

Exceptions to the Kalman filter’s Gaussian assumption do not necessarily cause
mistracking. They simply remove the guarantee of optimality, which in any case
is rarely achievable for real-world images. Thus, the algorithms we will present
do not seek to completely eliminate problems, only to mitigate them. Suboptimal
performance can, of course, result in mistracking. Our claim is that these techniques
will help many trackers perform at a satisfactory level in a wider range of visual
situations.

This work is primarily organized around an analysis of three interpretations of
distractions and occlusions in the context of estimation, and the description of a
series of filters tailored to deal with them. First, we treat visual disturbances as
random, transitory events. This prompts the simplest of the four data association
filters that we will present: the Probabilistic Data Association Filter (PDAF) [5].
Second, we examine the case where disruptions are caused by other tracked objects.
The Joint Probabilistic Data Association Filter (JPDAF) [5] and Joint Likelihood
Filter (JLF) are responses to this interpretation. Finally, we allow that disruptions
may be persistent and of unknown origin. Our strategy in this difficult situation is to
define the object more distinctively: the Constrained Joint Likelihood Filter (CJLF)
is a method for conjoining trackers of different modalities that are geometrically
linked. Each of these filters (in the order just listed) incorporates the core of the
one preceding it while adding more functionality. Thus, for example, the PDAF
can withstand noisy visual phenomena that may be distracting, but the JPDAF
compensates for these and distractions caused by other targets.

As the PDAF and JPDAF are based on the Kalman filter, they work with point-
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Figure 1.2: Noise-like distractions due to falling snow

like measurements rather than directly on images. The other major component of
this dissertation is therefore a process for segmenting a discrete set of image areas
that resemble the target (where resemblance is a metric that depends on the modality
used for tracking) and supplying summaries of these as measurements to the data
association filters, including the JLF and CJLF. The term “measurement” thus serves
as a convenient shorthand for coherent subsets of the image data that may be used
for state estimation. It is the data association filters that address the correspondence
portion of the visual tracking problem defined above by selecting or weighting the
influence of these alternatives on estimation.

We will now examine the three interpretations of visual disruptions and the data

association filters that they motivate in somewhat more detail.

Noise An often-plausible interpretation of multiple or missing target-like observa-
tions results from ascribing them to random visual events. The image is typically
corrupted by noise generated by the camera CCD or video capture device, but such

effects are usually only significant for targets projecting to very small image areas.



Another kind of transient event that can hamper object tracking is due to scene
processes such as dazzling sun reflections on a choppy body of water, or bad weather
like the falling snow in Figure 1.2, which results in a speckled foreground. These
phenomena can distract estimation by causing false target-like observations if they
and the object have similar colorations, or if the segmentation procedure is sensi-
tive to strong motion or intensity cues. Alternatively, the noisy image patches may
periodically obscure the target, suppressing the expected target-originated observa-
tion. If the correspondence mechanism is too narrow in the data it allows to be
used for estimation (picking only one of several possible observations, for example),
it may exclude the correct data and eventually be pulled away from the target. By
considering more data, our adaptation of the PDAF algorithm to vision lessens the
chance of a misstep and thus improves robustness. Assuming that their distribution
is roughly uniform or Poisson and that their density is not too great, the effects of
the transient, non-target-originated observations cancel each other out and the more
persistent target-originated observation dominates the estimation process.

The segmentation procedure that we introduce for finding measurements uses a
nonlocal search in order to consistently identify multiple possible sources of ambigu-
ity. A byproduct of this nonlocality is improved performance when the target makes
agile movements. The sudden jump of a target away from its expected state can
confound trackers that are not prepared for clutter, but by casting a wide net for

distractors our algorithm catches up with such motions and resumes normal tracking.

Other objects When trying to track multiple similar or identical objects, by defi-
nition there is more than one image feature that matches the object description well,
such as with the penguins in Figure 1.1. This means that the segmentation procedure

of a single tracker running in isolation will consistently return multiple measurements



when the objects are close to one another. Because these measurements are persis-
tent, they invalidate the assumption of the PDAF that only one measurement is
due to the target and that the rest stem from noise. The inclusive use of data by
the PDAF backfires in this case, yielding a state estimate that is a compromise be-
tween the estimates that would be obtained if a separate estimator were correctly
associated with each persistent measurement. The JPDAF effectively implements
this approach by extending the PDAF to share information between trackers. The
maintenance of a logic of associations prevents different trackers from claiming the
same measurement and thus substantially improves the quality of the data they use
for state estimation. To ensure that the trackers are all considering the same pool
of measurements, a joint segmentation procedure is necessary to merge the results
of the individual segmenters (which only look at the image in the neighborhood of
where they expect their object to project) and eliminate duplicates.

The JPDAF only works for tracking a set of identical objects and does not con-
sider the possibility of targets occluding one another, a fairly frequent occurrence. An
occlusion modifies the observed image projection of an object, causing a mismatch
with the expectations of the standard segmentation procedure. The JLF expands
the sharing of information between trackers in order to deduce occlusions during
segmentation, resulting in better measurements. Moreover, the JLF evenly assorts
trackers among image features as the JPDAF does, but it improves on the JPDAF
by allowing a mixture of different trackers to interact e.g., a color-based tracker

and a shape-based tracker.

Persistent, unknown features Distractions and occlusions may also result from
untracked, non-noise scene elements. This class of phenomena is difficult to counter-

act within the context of a data association filter. Rather, we will pursue a strategy
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Figure 1.3: Conjunctions of parts and attributes describe objects more distinctively

of trying to reduce the incidence of persistent disturbances by defining the target
more distinctively. Consider the soccer players in Figure 1.3. A color-based tracker
assigned to the shirt of the player on the right may have trouble with distractions
because there are other red regions in the image. However, by linking the shirt
tracker to a white-shorts tracker via a constraint, we eliminate red regions that are
not above white regions as potential distractors. A still-more distinctive description
of the shirt would result from taking into account the appearance of the logo on its
front. Then we would be looking for red regions with the proper insignia above white
regions, a unique feature in this image.

Adding geometric parts to an object description, of course, makes the effective
target bigger. A benefit of increased size is a corresponding decrease in the negative
influence of typical occlusions. If we were tracking the red player’s shirt alone, for
example, the arm of the yellow player in front on him would bias any estimate
of its size. When tracked in conjunction with the logo and the shorts, which are
unoccluded, the shirt tracker has additional scale information to help improve its

estimates.
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The CJLF is an extension of the JLF that incorporates constraint information to
more distinctively describe and thus more effectively track an object. It provides a
framework for the combination of multiple attributes, such as the color of the shirt
and appearance of the logo, and multiple geometric parts, such as the shirt and

shorts.

1.1 Theses

This dissertation is concerned with mitigating the effects of disruptions in visual
tracking caused by distractions, occlusions, and agile motions. We observe that
these phenomena cause ambiguity about which image features to base estimation on.
Therefore, we contend that a correspondence problem must be addressed in concert
with estimation in order to ensure robust tracking. Our approach is to classify
several possible sources of these disturbances namely, noise, other tracked objects,
or persistent, unknown scene elements—and construct or adapt data association
filters apposite for each one. A guiding principle in the design of these filters is the
integration of multiple sources of information. Multiple trackers share information
about correspondences to avoid interference and single-object trackers are defined as
conjunctions of multiple attributes and parts for greater distinctiveness.

Our approach to distinctiveness leads to a building-block strategy of composing
complex trackers from relatively simple pieces (in terms of geometry and modality)
instead of creating a monolithic algorithm specialized for a particular task. This
makes our framework flexible with regard to what is being tracked and amenable to
the incorporation of techniques used by other researchers or devised in the future.

Briefly, this dissertation makes the following contributions to vision-based track-

ing:
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e We adapt and apply data association methods (PDAF, JPDAF) to vision for
significantly better tracking performance in the presence of noise and multiple

targets

e We define a robust, general algorithm for finding a set of good matches to the

target’s image projection

e We put different tracking modalities (color regions, SSD features, and snakes)
into a common framework for comparison and interoperation; our approach to

color region tracking is original

e We introduce a joint tracker (JLF) that supersedes the JPDAF by accom-
modating trackers with different modalities, handling partial occlusions, and

deducing depth relationships from the image

e We extend the JLF to incorporate geometric constraints between low-level
trackers, including a novel notion of “layered” attributes of the same image

areas

1.2 Overview

Chapter 2 reviews the probabilistic foundations of the visual tracking problem, ex-
plains the assumptions of our Kalman filtering approach, and defines some useful
terms.

Chapter 3 derives a formulation of image similarity for three modalities that rely
on color, shape, or appearance to define the target. Defined more generally, we
will call these modalities homogeneous regions, snakes, and textured regions, respec-
tively. These ways of interpreting images will constitute the basis of the segmentation

method outlined in the following chapter.
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Chapter 4 addresses noise and agile motion as causes of mistracking. First, the
image preprocessing necessary for successful adaptation of data association filters to
vision are analyzed. Specifically, we examine gradient ascent methods for obtaining
a single best hypothesis with which to update the state estimate, and then detail a
procedure that extracts a set of good hypotheses using random sampling. It reviews
a measurement-based tracking algorithm from the radar and sonar literature, the
Probabilistic Data Association Filter (PDAF), that performs well in the presence of
noise. The modalities from Chapter 3 are used to track various objects that exhibit
agile movement and in the presence of background clutter.

Chapter 5 examines the problem of interference caused by other known objects.
It explains two techniques for tracking that extend the work of the previous chapter
to manage a known number of multiple similar or interacting objects. The first is an
existing extension to the PDAF for joint tracking, the JPDAF, which is explained
and adapted to vision with a refinement to the measurement generation process that
combines gradient ascent with random sampling. The second technique covered, the
Joint Likelihood Filter (JLF), is a new algorithm that handles targets of different
modalities that overlap one another by reasoning about their depth ordering.

Chapter 6 introduces methods for describing a tracked object more distinctively
in order to minimize the deleterious effects of unknown, persistent distractions in the
scene. An extension to the JLF, the Constrained Joint Likelihood Filter, is explained
that defines complex objects via geometric constraints between trackers of like and
different modalities.

Chapter 7 surveys related work on tracking by other researchers and analyzes its
relationship to the techniques promulgated here.

Finally, we sum up our contributions in Chapter 8 and discuss future research

directions.



Chapter 2

Background

Mumford [89] and others have suggested that many problems in vision may be cast
as an attempt to find a mazimum a posteriori (MAP) estimate [86] of the state of
the world given a signal that is a transformed version of it. The image I perceived
by a camera or eye at any given moment is the result of a transformation of the
world W dictated by the laws of physics. Bayes’ theorem [89, 101] provides a tool

for reasoning probabilistically about the world from what is seen:

p(I|W)p(W)
p(T)

p(I) can be deduced from the other terms by p(I) = [p(I | W)p(W)dW (where

p(WII) = (2.1)

W € W, the space of all possible worlds), so it is typically treated as a normalizing
constant 1/k. A MAP estimate of the state of the world, which is not necessarily
unique, is a maximally likely one given the observed image: argmaxyp(W |I). The
maximum likelihood (ML) estimate [38, 101] is equivalent to the MAP estimate
assuming a uniform (and therefore noninformative) prior probability on the state of
the world p(W).

To track, an observer focuses its interest on a small part of the world, which we

14
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call an object or target, and takes past images into account. At time t the state
X, € X represents the current estimate of the object’s salient parameters (where X
is a subspace of W). Instead of a single image, a tracking estimator uses the sequence
of images I;,I;_1, ... observed so far. Thus, the tracking task in the MAP framework
is to estimate a state that maximizes p(X; |I;,I; 1,...). Applying Bayes’ theorem

and rearranging yields the following expression [5, 60]:

p(Xt | L, I, .. ) = ktp(It \ Xt)p(Xt | L1, I, .. ) (2-2)

Here p(X; | I; 1,I; 5,...), which summarizes prior knowledge about X, is a pre-
diction based on the previous state estimate and knowledge of the object’s dy-
namics. In order to simplify the last term on the right hand side, we must as-
sume that object dynamics are such that states form a Markov chain [101], so
p(Xy | X1, Xp9,-..) = p(Xy | Xy 1). This yields p(X; |I; 1,1 9,...) = fxt—l p(Xy |
X )p(Xe1 L1, Lo, ).

The quantity p(I; | X;) describes the relative probability of observing a particular
image at time ¢ given the current state. We call this the image likelihood. The image
likelihood depends on the physics of image formation and noise that may corrupt
what is expected [75]. Assuming that the laws of optics are fixed and that noise
sources are roughly stationary, we can drop the time indices and refer to the image
likelihood as p(I|X).

In order to define p(I|X) more precisely, we will first introduce a few terms. Let
the space of images be Z and 7 : X — Z be an image prediction function which de-
scribes the expected image projection of the target assuming that it is in a particular
state. Depending on how detailed it is, X alone may be insufficient to predict an im-

age, making it necessary to build information about W into 7 (besides physical laws
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themselves). For example, if they are not explicitly included in X, assumptions must
be made about lighting, occlusions, background, reflectance properties of the tracked
object, camera variables such as focal length, and so on. In this sense, modeling the
image formation process is closely related to computer graphics [43].

The image actually observed also depends on noise. Noise is a factor that in-
creases uncertainty about the exact image projection of the tracked object. With no
uncertainty, the image likelihood p(I|X) would be unity at the exactly the expected
image and zero everywhere else. With it, other images tend to have a likelihood
proportional to their degree of similarity to the expected image.

An efficient algorithm for computing the MAP estimate of Equation 2.2 when
p(Xy | It, I, 4, ...) is Gaussian is the Kalman filter [5, 69]. In order for p(X; |
I;,I, 1,...) to be Gaussian, p(I | X), p(X; | X;_ 1), and the prior probability of
the state before any images are viewed must be Gaussian. Some possible causes of
and remedies for non-normality are discussed in [60]; in Chapters 4 and 5 we present
data association filters that handle certain kinds of violations of the Kalman filter’s
assumptions.

Tracking filters such as the Probabilistic Data Association Filter (PDAF) and
Joint Probabilistic Association Filter (JPDAF) [5] were originally developed for
tracking aircraft radar blips, a domain that differs from vision-based tracking in
a number of respects. Most importantly, many radar-type targets are simply points,
limiting their state to position and dynamics. We need to include such parameters
as scale, orientation, color, and shape. Furthermore, the unmodified data association
filters assume that a measurement or measurements are implicitly provided to them.
The meaning of a “measurement” in the context of raw images is not immediately
obvious. As we noted in the previous chapter, we define measurements to be image

areas that match the target’s expected image projection well. A discrete list of the
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modes of the image likelihood function reduces the data any state estimator must
process, while capturing the intuitive notion of alternative candidate states that a
tracker might be in.

For radar blips, a target might be expected to be observed as a bright point
on a dark background, so simple thresholding would quickly segment out all high-
likelihood hypotheses for the target location. These hypotheses could be succinctly
represented as a list of (z,y) pairs. Generating visual target measurements is usually
more difficult than thresholding, and their extents require more information to be
adequately summarized than simple image location. Possible measurement parame-
ters include geometric characteristics relevant to the target state such as the location
of the area’s center and its height, width, and orientation. These parameters define a
measurement space Z such that a point Z € Z is related to a state X via a continuous
measurement function H(X) = Z. The measurement function may simply reduce
the dimensionality of X by dropping its temporal parameters, or it may also describe
a more complicated relationship between what is measured and what is estimated.

The bases for p(I|X), and therefore for the measurement generation procedure
that is described in Chapters 4 and 5, are the form of the predicted image projection
of a target m(X) and the method for quantifying the similarity of the image I to
that prediction. Both of these depend on what we call the modality used to identify
the object. A tracking modality is a visual attribute such as a specific shape, color,
direction of motion, etc. that constitutes a tracking algorithm’s complete description
of its target. For example, suppose we want to track a bright red ball. We might
choose a color modality to predict the hue of the ball’s circular image projection
and to define a metric on circular areas of hue in order to gauge the similarity
of our prediction to the actual image. This method does not exploit all available

image information about the ball (ignoring, for instance, any designs printed on it
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or its motion), but makes a choice about what information is relevant and adequate.
The act of selecting a modality is first an acknowledgement that there is as yet
no all-purpose, exact theory of object appearance, and second an assertion that
for efficiency’s sake only partial information, if picked judiciously enough, can yield
satisfactory tracking performance.

The question of whether the information about X transmitted by a modality
is the same as that carried by I is captured by the notion of a sufficient statistic
[27]. Most modalities are not sufficient statistics, so we should be concerned about
their effect on the accuracy of estimating X. It is certainly possible, based on the
image environment and target, to use a tracking modality that removes too much
state information to be useful. Of course, the image itself may not contain enough
information about the object for it to be tracked. The methods described in this
dissertation place the ultimate responsibility for determining the best modality for
a given tracking task, or whether a task can indeed be accomplished, in the user’s
hands. In Chapter 8, we sketch a possible approach to automating these decisions.

The next chapter describes in detail three different, complementary modalities

that we use for tracking.



Chapter 3

Tracking Modalities

In this chapter we discuss the first component of our approach to tracking solitary
objects assuming they are the only salient visual features in the image. This is the
form of the likelihood function p(I | X) for the various modalities used to analyze
the image. The image likelihood is explicated for three specific types of tracker:

homogeneous regions, textured regions, and snakes.

3.1 Regions

The term “region” has a precise mathematical meaning (i.e., an open, connected set
[50]) that differs slightly but significantly from the sense in which this dissertation
uses it. For visual tracking, we define a region as the projection onto the image
of a simply connected mathematical region lying on a smooth surface. We will
subsequently refer to the mathematical region that projects to an image region as a
patch in order to avoid confusion and emphasize its relationship to a physical surface.

The image prediction function 7 defined in Chapter 2 has a few essential compo-
nents for a given region . Whether derived from the region’s state X or taken as

constants, certain values are necessary to simulate the image formation process and
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Figure 3.1: Viewing geometry for the projection of a surface patch P onto an image
region R.

arrive at a predicted image 7(X). One set of required variables describes the geom-
etry of the patch P that gives rise to R, including shape, location in R? relative to
the viewer, and orientation. A second group of variables summarizes the reflectance
properties of P, such as its pattern of albedos for various spectra (e.g., coloration)
and bidirectional reflectance distribution function (BRDF) [54]. Finally, information
about scene illumination, camera parameters, occlusions or inter-reflections involving
the surface S associated with P, and other incidentals must also be encoded.

This section examines two specific kinds of regions distinguished by the reflectance
properties of P. Let cp : P — R? be a function describing the intrinsic color pattern
over P in RGB space (akin to a computer graphics texture map [43]). If ¢p(P) is
constant, then we call R a homogeneous region. If cp(P) has significant intensity
gradients both vertically and horizontally (P may be curved, but its simple connect-
edness allows it to be mapped to R?), then we call R a teztured region. A Lambertian
[54] BRDF is assumed for both homogeneous and textured regions. The differences
in ¢p(P) between the two region types lead to alternative formulations of the image

prediction function 7 and similarity between the actual and predicted images.
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3.1.1 Homogeneous Regions

Let cp: R — R* be a function describing the irradiance (image brightness) of the
homogeneous region R. According to the Dichromatic Reflection Model (DRM) [74],
if P is Lambertian the range of cg lies on a line (the matte line) in RG B space passing
through (0,0,0). The direction of the matte line describes the intrinsic color of P,
while the distribution of ¢z (R) along it is governed by the curvature and orientation
of P, as well as the amount of ambient illumination. In practice, camera noise and
departures in ¢p from perfect uniformity makes the matte line a cluster, and factors
such as gamma correction and the limited dynamic range of the camera can introduce
nonlinearities in the cluster shape.

Furthermore, if P is glossy then specularities give rise to a second line (the high-
light line) in RG B space that intersects the matte line in a skewed-T configuration.
The direction of the highlight line is determined by the color of the light source
causing the specularity. The matte line and the highlight line completely describe
cp under the DRM.

For many interesting materials such as human skin, ordinary clothing fabric, and
automobile paint, the DRM is a useful, accurate reflectance model. In previous work
[95], we described a method for modeling a given region R’s color by parametrizing
cr’s distribution along the matte line alone. Before starting tracking, the user man-
ually selects a set of pixels in R that are non-highlighted, non-saturated, and have
significant intensity variation to get a well-defined, linear distribution. Using princi-
pal components analysis (PCA) or singular value decomposition (SVD) [91, 94|, an
ellipsoid whose major axis is aligned with the matte line is fit to the sampled pixels’
color distribution in RG B space.

This is accomplished as follows. Suppose D is a 3 x K matrix of the K RGB
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values chosen by the user. The 3 x 3 covariance matrix for D is defined by 3;; =
Zlf:l(Dik — 1) (D — p5), where gy is the mean red component r of the pixels
selected, ps is the mean green component g, and pug is the mean blue component
b. Singular value decomposition factors any M x N matrix A for which M > N
into A = UW V!, where U is an M x N column-orthogonal matrix, W is an
N x N diagonal matrix, and V is N x N and orthogonal. For symmetric A such as
covariance matrices, U =V,

The SVD of ¥ has a geometric interpretation that we clarify by rewriting it as
¥ = RS?RT, where R is a 3 x 3 rotation matrix and S is a 3 x 3 scaling matrix that
define an ellipsoid in R®. This ellipsoid, which is obtained by scaling the unit sphere
by S, rotating it by R, and translating it by T = (1, po, 3)?, fits R’s matte cluster
and hence models its color. The steps of the process leading from sample selection
to model definition are illustrated in Figure 3.2(a-d) for a region corresponding to
the front of a soccer player’s orange jersey.

At the level of a pixel (x,y) within the region R described by the current state,
the image prediction function 7w postulates that its color will simply be T. We use
the Mahalanobis distance [38], which is the number of standard deviations o from a
point to the center of a multivariate Gaussian distribution, to measure the similarity
7 between the predicted pixel color T and the actual color I(x,y) at that image loca-
tion. The function v plus a representation of the region’s geometry will constitute an
overall image similarity metric, which is discussed below. The Mahalanobis formula-
tion results in y(I(z,y), T) = [(I(z,y) — T)" ' (I(z,y) — T)]/2. The inverse of the
covariance matrix is easily computed from the SVD as ¥ ! = RS 'S ! R” yielding
a simplified form of the pixel similarity function as the magnitude of a transformed
vector: y(I(z,y),T) = |S'R” (I(z,y) — T)|.

The pixel similarity « is shown in graphic form for the soccer player’s jersey in
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Figure 3.2(e). In it, v(I(z,y), T) = 0 is represented as a white pixel (gray level 255)
at (z,y), 7(I(z,y), T) > 3 as black (gray level 0), and the gray levels of intermediate

image similarities are linearly interpolated.

Geometry

Another key component of the image prediction and similarity functions is the geo-
metric representation of R. For a region, we want to emphasize rough properties such
as location, scale, aspect ratio, and orientation over its precise shape. We therefore
characterize a region as a rectangle parametrized by image position z, y, size w, h,
and orientation ¢. The rectangle C' used to represent R is the best-fitting one accord-
ing to the criterion that it minimizes the objective function fz(C) = |R—C|+|C—R|,
where | R| is the area of region R and Ry — Ry = {(z,y) : (z,y) € Ry and (z,y) ¢ R»}.

A rectangle is obviously only an approximation to the actual boundary of most
regions, but it is a fairly good one for many interesting tracking targets such as
human body parts (face, torso, and limb segments); balls (soccer, basketball); vehicle
sections (car sides, aircraft fuselages); and manipulable objects (screwdriver handles,
floppy disks, etc.).

Furthermore, the rectangular shape approximation assumes that the patch P
giving rise to R does not rotate out of plane (i.e., out of a plane parallel to the image
plane) or undergo nonrigid deformations. In general, such occurrences can decrease
the closeness of fit between C' and R. However, if P is defined as the portion of
the surface S visible to the viewer and S is spherical, the tracked object can rotate
out of plane with two degrees of freedom without degrading C’s goodness-of-fit. If
S is cylindrical, the tracked object has one degree of freedom out of plane. These
properties are often useful when tracking, for example, people’s heads, which are

roughly spherical.
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(b)

Figure 3.2: Color-based membership. (a) Initial image with location of 24 x 32 pixel
rectangular sample overlaid; (b) Close-up of color sample; (¢) RGB representation
of color sample; (d) o = 1 ellipsoid fitted to sample using principle components
analysis; (e) Pixelwise color similarity v of initial image to model via Mahalanobis
distance induced by ellipsoid.
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(b)

Figure 3.3: Homogeneous Region. (a) The geometry of a region for an arm tracker
with the positive center C' and inhibitory frame F' labeled; (b) Pixel similarity v of
the image to the modeled arm skin color, with R’s geometry overlaid. (Input image
courtesy of J. MacCormick)

Image likelihood

The boundary of R is not known a priori, so two heuristics are used to identify it:
(1) pixels for which « is low are likely to be in R; and (2) pixels for which ~ is high
are likely to be outside R. By this logic the rectangle-fitting objective function f
is minimized by minimizing the sum of v over all pixels inside C' while maximizing
it outside. Efficiency allows only a relatively small area of the image outside C' to
be analyzed, and the reflectance contrast assumed in the second heuristic between
R and its surroundings is only reasonable locally. The local image neighborhood
of the positive center C' is delineated by a rectangular border F' which we call the
inhibitory frame. To balance its influence on the rectangle-fitting objective function
f, F is sized so that |F'| = |C| while maintaining the same aspect ratio. This means
that wp = wev?2 and hp = hevV/2. A good but suboptimal fit of a rectangle and its
frame to a human arm region is shown in Figure 3.3.

These conditions are satisfied by the following expression for the conditional prob-
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ability of a homogeneous region:

phregion(I ‘ X) = Slg ( 9 ! Z CL(LE, y) ' whmgion(xa y)) (31)

hregion z,yeCUF

where sig () = and a(x,y) is the fraction of the total area |R| of the region

1
1+e—*
R represented by the pixel at (z,y) (e.g., ﬁ if every pixel is counted different if

subsampling or adaptive sampling is used). is a term that represents the

O—inregion
variance of the sum; explanations of its purpose and the values assigned to it for
homogeneous regions and the other modalities are given at the end of the chapter.

The degree to which each pixel in the region fits the membership model is given by

Uhregion (2, Y) = ~1lEy), T) A my) € O (3.2)

Yz, y), T) if (z,y) € F
Referring back to the terms defined in Chapter 2, the image prediction function
7 for regions posits an image consisting of a rectangle of color defined by v framed

by a contrasting color, with location, size, and orientation described by the state X.

3.1.2 Textured Regions

A textured region is defined as a region whose patch P has an intrinsic color pattern
cp(P) with significant intensity gradients both vertically and horizontally. A strong
gradient allows sum-of-squared-differences (SSD) methods [80, 109, 51] to successfully
estimate the region’s geometric and photometric transformations. Here we limit our
attention to affine geometric transformations of an intensity patch whose projection
is approximated by a rectangle.

We write cg(R) to denote the pattern, similar to a homogeneous region’s color

parametrization, by which a textured region R is recognized. We model c¢i(R) by
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having the user select a rectangular image sample I of the target called the reference
image before tracking is to begin. An example of the selection step is shown in
Figure 3.4(a) and the resulting reference image in Figure 3.4(c).

At any moment during tracking, the state X of the object specifies the shape of
R as a warp of the reference image. That is, X postulates that the current image
contains a shifted, rotated, scaled, and sheared version of I;, which we call the
predicted image Ip. The image prediction function 7 thus embeds Ip in the current
image at the appropriate location. Ip can be derived from X by performing an affine
warp A (assumed part of the state) with bilinear interpolation [43] on I. In practice,
the image inside the rectangle predicted by X is inversely warped using A~! to get
a comparison image I that is the same size as the reference image. An example of
the predicted shape and location for the textured region referred to above is shown
in Figure 3.4(b); its associated comparison image is depicted in Figure 3.4(d).

The gradient of textured regions makes feature comparison within regions suffi-
cient to measure scaling, obviating the inhibitory frame necessary for homogeneous
regions. An SSD formulation expresses the conditional probability of the image I
given the state X as inversely proportional to the difference between the reference

image and the comparison image:

ptregion(I | X) = exp (* 2 ! Z (I,(.I‘, y) ’ 77btregion(l‘a y)) (33)

tregion

CU,yEIR
where a(x,y) is the fraction of the total area of the reference image |Ix| represented

by the pixel at (z,y) and

d)tregion(xa y) = (IR(x; y) - Ic(]}, y))2 (34)

An image representing the residual for the example is shown in Figure 3.4(e).
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Figure 3.4: Textured Region. (a) Selecting the reference image for a face tracker;
(b) One possible state; (c) Reference image I from (a); (d) Normalized comparison
image I for the state in (b); (e) Difference image [Ig — I |.
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3.2 Snakes

We define a snake [18, 117] as the projection of a continuous contour lying on a
smooth surface onto the image. Analogous to the nomenclature of patch and region
in Section 3.1, we will use the term contour exclusively to refer to the curve on the
surface in R® and the term snake for its image projection. The contour may be
either closed or open. At each point along its length the contour has a type that falls
into one of the following categories: (a) it delineates an edge on the surface between
regions with contrasting properties, (b) it follows the silhouette of the surface against
a contrasting background, or (c) it traces a line on the surface that contrasts with the
local properties on both sides. Whichever the type of the contour, the contrasting
properties that define it may be intensity, color, texture, or some more complicated
visual quantity. In this dissertation we assume that the contrast takes the form of
an intensity difference, permitting the use of standard edge detection algorithms.
In the next two subsections we describe two edge detection techniques and a

method of snake shape representation.

3.2.1 Edge Detection

A prerequisite for fitting a shape model to an intensity disparity curve is to find
the edges in the image. If the image is color, it is first converted to grayscale
before performing an edge detection operation. For intensity, we use the lumi-
nance component Y of the standard RGB — YUYV colorspace conversion given
by Y =0.299 R+ 0.587G + 0.114 B [93].

Numerous approaches to extracting edges from images have been investigated
in the vision literature. An in-depth discussion of the pros and cons of the various

methods is beyond the scope of this dissertation, so we will simply present two that
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we have used successfully. The Sobel edge operator [111] is less sophisticated but has
the virtue of speed, while the Canny algorithm [23] is a widely-accepted benchmark

that requires considerably more processing. The two methods are described below.

Sobel

Sobel edge detection [111] approximates the gradient of the image intensity function
VI = (&, g—;) = (I,,I,) by convolving the image with a horizontal mask S, and
vertical mask S, such that I, S, ® I and I, = S, ® L.

Each convolution mask is separable into the product of 1-D derivative masks

D, = (-1,0,1), D, = (-1,0,1)" and 1-D triangular smoothing masks T, = (1,2, 1),
T, = (1,2,1)" as follows:

-1 0 1 -1 -2 -1

-1 0 1 1 2 1

The gradient magnitude of I indicates the strength of an edge and is approximated

by |[VI| 2 /(S, ® I)? + (S, ® I)2. It can be thresholded to eliminate weak edges by
setting |VI(z,y)| = 0 if |[VI(z,y)| < 7 and binarized by setting all values above 7 to
some non-zero constant.

The result of Sobel edge detection on a grayscale image of a person’s head ob-

tained from an infrared camera is shown in Figure 3.5(b).

Canny

Canny edge detection [23] resembles the Sobel method with extensive post-processing.
The image is first convolved with a smoothing mask approximating a Gaussian with

standard deviation . The Gaussian mask G is separable into horizontal and vertical
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1-D masks G,, G, (where G, = GZ) whose widths depend on o. Truncating the tail
of the Gaussian to 0 at 2.5 ¢ yields, for example, a mask width of 7 for o = 1.0 and
G, = (0.004,0.054,0.242,0.400, 0.242,0.054,0.004). Using a Gaussian instead of a
the Sobel triangular smoothing mask is superior from a filtering standpoint, though
somewhat more expensive.

Next, the blurred image G ® I is differentiated by convolving it with the deriva-
tive masks D, and D,. This is the same as differentiating the Gaussian mask and
convolving the result with the image. Specifically, G|, = D, ® G and G, = D, ® G,

yielding I, =~ G}, ® I and I, = G, ® I. The magnitude of the estimated gradient is

computed as above: |VI| ~ \/(G’I ®1I)?+ (G, ® 1)~

Due to the smoothing, image edges are correlated with rounded ridges in the
gradient magnitude function rather than sharp spikes. The next step of the Canny
algorithm, called non-maximal suppression, attempts to remove all but the tops of
these ridges for more precise edge localization. Intuitively, we want to keep only
those pixels whose edge strengths are higher than those of their two neighbors per-
pendicular to the direction of the edge (pixels with edge strengths of 0 are thrown out
immediately). The coordinates of those neighbors for a pixel (z,y) are (v +u,y +v)

and (x —u,y —v), where (u,v) = (‘é””l(é’y))‘, ‘éyl(é’z))‘) is the unit vector along the gradi-

ent direction. (x +u,y+v) and (x — u,y — v) are not integer coordinates in general,
so each of their gradient magnitudes must be interpolated from the four surround-
ing integer coordinates, one of which is always (x,y). Several different interpolation
methods that trade efficiency for accuracy are commonly used; the most accurate is
bilinear interpolation [43].

Finally, a form of thresholding called hysteresis is applied to remove weak edges.
Rather than a fixed threshold as with the Sobel technique, upper and lower thresholds

Thigh and Tjg,, respectively, are employed. Pixels (z,y) for which |VI(z,y)| > Thign
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are accepted immediately, while pixels (z,y) for which |VI(x,y)| < T, are rejected
immediately. A pixel whose strength is between the two thresholds is only accepted
if it is connected (in the eight-connected sense) to a pixel above 7y, by a sequence of
pixels above 75,,. This reduces the incidence of edges being broken up, or streaking,
due to minor variations in gradient magnitude around a single threshold. 74, and
Tiow, Which are in units of edge strength, are typically derived from two other quan-
tities Tpign and 74, that the user sets directly. 7pn € [0,1] is a percentile threshold
on the distribution of edge strengths of the pixels surviving the non-maximal sup-
pression step. A value of 73, = 0.8, for example, indicates that 74, should be set
to whatever gradient magnitude is greater than 80% of the gradient magnitudes of
unsuppressed pixels. 7y, € [0, 1] is just the fraction of this number that 7., should
be set to: Tiow = Tiow Thigh-

The result of Canny edge detection is a binary image of edges and non-edges. An
example output based on the IR head image used in the Sobel section is shown in

Figure 3.5(c).

3.2.2 Shape Representation

We represent a snake as a periodic or nonperiodic, uniform, cubic B-spline [18, 56,
120] constrained to deform affinely. The spline approach allows an arbitrarily de-
tailed description of the shape of the tracked object, while the affine constraint
efficiently captures the snake’s degrees of freedom if its associated contour is a rigid,
planar curve restricted to translation, scaling, and in-plane rotation. Allowing un-
constrained deformations of the snake can cause mistracking because it discards
information about the correct relative locations of snake segments. More complex
situations such as space curves and perspective and nonrigid transformations, how-

ever, can be handled straightforwardly by adding dimensions to the state [18].
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Formally, a uniform, cubic B-spline is a curve A comprising N equal-length cubic
polynomial curve segments A; between which there is second-order (C?) continuity.

The #th curve segment is defined parametrically over 0 < «w < 1 as a blend of four

control points p;, ..., P;+3 according to:
4
Ai(u) = ZBk(U) Pitk—1 (3.6)
k=1

Using the C? continuity condition between curve segments plus a constraint that
S Bi(u) =1for 0 <u <1 (ie., every point along a curve segment is a weighted
average of the segment’s control points), we can deduce four unique cubic blending
functions that are valid for any curve: By = £(1 — u)?, B, = ¢(3u® — 6u” + 4),
B; = %(—311,3 +3u? +3u+1), and By = %u:‘. Written in matrix form, Equation 3.6

becomes:

3 =6 3 0 |ps
(u® u® u 1) o (3.7)
-3 0 3 0f|pis

Ai(u) =

=

1 4 10 Pit+3

Let P = (X,Y) = (p1,....pm)? be a vector of the entire B-spline’s control
points. For periodic curves, M = N; for nonperiodic curves, M = N + 3 (assuming a
cubic B-spline). The analog of the parameter u for the length of the whole curve is s,
where 0 < s < N. A vector of global blending functions G(s) = (G1(s),...,Gum(s))
serves to transform s into its local equivalent v and pick out the supporting local

blending functions B; according to A(s) = G(s) P. Each G; is defined as:
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)
By(s'—i+4) i—4<¢<i—3
By(s' —i+3) i—3<s <i—2
Gi(s) ={By(s' —i+2) i—-2<s<i—1 (3.8)

Bi(s' —i+1) i—1<s <i

0 otherwise

\
where s’ = s if A is nonperiodic and s’ = s — 4 if A is periodic and s > M — 3.
Since the snake may deform or move over multiple video frames, we index the
curve and hence its control points by time: A(s,t) = G(s)P(¢). The initial config-
uration of the control points P(0) = (X,Y) is derived from a user-selected set A
consisting of n points along the curve which we call the shape template. A simple
method for doing this is to take the shape template points to be the endpoints of
A’s curve segments. For nonperiodic splines, the user chooses n = N + 1 roughly
equally-spaced points so that A = (A(0,0), A(1,0),...,A(N,0))”. The condition
that the curve endpoints coincide with the first and last control points is added to

ensure a unique solution, yielding the following set of simultaneous equations for

P(0):
A(0,0) 1 0o .- 0 p:(0)
A(0,0) Gi(0)  G2(0) -+ Gu(0) p2(0)
= (3.9)
A(N,0) G1(N) Go(N) - Gu(N)| | par_1(0)
A(N,0) 0 0 1 pu(0)

For a periodic curve, one fewer point in the shape template is required to specify

n = N segments, making A = (A(0,0), A(1,0),...,A(N —1,0))". Also, there are
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two fewer unknowns and thus no need for extra conditions. The periodic analog of
Equation 3.9 is thus A = (G(0),...,G(N — 1))" P(0).
The affine representation Q(t) of the snake is derived from the B-spline represen-

tation P(¢) as follows [18]:

X (t) X
Q(t)=M - (3.10)
Y (1) Y
where
M=(W'HW)'"W'H (3.11)

W is an affine basis defined as:

W = (3.12)

o
p—
o
=)
Pl
o

where 0 = (0,...,0)", 1 = (1,...,1)T are M-vectors, and H is the metric matrix

[16] given by:

L, [Zhet)60) 0 1o

N T
0 =0 G (s) G(5)
Variations in the snake’s control points over time are described by an affine trans-

formation of the shape template’s control points:

~

X () X
- —WQ() (3.14)

~

Y(t) Y
Thus, the full B-spline can be deduced from Q, but is restricted to a smaller-

dimensional affine subspace of the configurations than would be possible if P were
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unconstrained.

3.2.3 Image likelihood

The image prediction function 7 for snakes hypothesizes a curve derived from Q
along which there is an intensity disparity. To compute the image similarity between
the image and this prediction, we define p(I|X) by adapting the formula for “p(z|z)”
as described in [59].

For each of the n segment borders comprising the B-spline parametrized by a
particular Q, edge detection is performed along a line of length L (typically 10-
20 pixels) that is normal to and bisected by the curve at that point. Let A(i) be
the image location of the curve at segment i, where 0 < i < n. Using the Canny
algorithm, we let z(i) be the location of the edge segment along the ith normal that
is found nearest to A(i). For the Sobel method, z(i) is the strongest edge along
the normal whose strength is over the threshold 7. Any failure to find a suitable
edge is noted and dealt with as described in Equation 3.16 below. The shape of
a nonperiodic snake and the Sobel edges detected on its normals are illustrated in
Figure 3.5(d).

Assuming the state X includes Q, we express the likelihood as:

n—1
Zl wsnake ) (315)

snake i=0

psnake( ‘X) - eXp

where [(7) is the fraction of the total length |A| of the snake represented by normal
i (e.g., N/|A| if the normals are evenly spaced). The degree to which the location of

each detected edge fits the shape model is given by
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Figure 3.5: Snake. (a) Human head (infrared image); (b) Sobel edge detection on
head image (7 = 45; brightness at pixel (z,y) is linearly interpolated after thresh-
olding between |VI(z,y)| = 0 as white and |VI(z,y)| > 255 clamped to black); (c)
Canny edge detection (o = 2.0, Ty = 0.25, Tpign = 0.75); (d) State of a sample snake
head tracker. Circles on curve normals indicate locations of strongest Sobel edges.
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. |A(7) — z(i)| if an edge is found
77bsnake(l) - (316)

£ otherwise

¢ serves as a penalty value for (i) when there is no edge detected along the normal

to the curve at segment 1.

3.3 Addenda

A factor in the construction of the image likelihood that deserves scrutiny is the
value of the variance o2 for each modality. The purpose of 02 is to ensure that
the ranges of the functions sig in Equation 3.1 and exp in 3.3 and 3.15 are within
machine precision. To see the necessity of this, observe that the ¢ term of each of
the modalities has a natural scale depending on its definition. For textured regions,
the value of tegion 1S a squared pixel intensity difference ranging from 02 =0 to
2552 = 65025. For homogeneous regions, Yhregion 15 @ Mahalanobis distance between
pixel colors which can range from 0 to roughly 10 depending on a region’s color
definition. A snake’s e is a distance in the image between a predicted and
measured edge; with the penalty term £ it ranges from 0 to £ (which is usually 10-
30). Appropriate modality-specific values for 2 can be empirically derived—e.g.,
by averaging the inverse of the mean ¢ for a modality over many object models,
samples, and images but we simply use reasonable approximations: afmgion = 4000,
ion = 25, and 02, — 400,

The ellipse-fitting idea for homogeneous regions is easily adaptable to grayscale
images by carrying out one-dimensional principal components analysis (PCA) on

the sampled pixel intensities. Such grayscale images might be the output of a depth-

estimating stereo algorithm [31, 70]. In order to reduce sensitivity to variations in
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illumination intensity, we may also use a similar method on the two chrominance
dimensions of color space representations such as YUV [93]. Computer graphics
or synthetic image sources where a region’s color may be perfectly uniform are not
amenable to statistical techniques such as PCA. In this case it is straightforward to
model color similarity as simple Euclidean distance in color space.

Variations on the method of fitting an ellipsoid to a color sample include using
robust methods [85] for dealing with outliers in the reflectances of sampled pixels
(such as the logo on the player’s shirt in Figure 3.2). Instead of rectangles for
representing shape of regions (homogeneous and textured), we might use periodic
B-spline outlines for more detail. This would require a simple generalization of the
notion of the inhibitory frame for homogeneous regions.

For all of the modalities discussed in this chapter, the model of the image pre-
diction function 7(X) neglects depth-dependent focus, motion blur, and other such
photorealistic factors. Ignoring the effects of these phenomena has a negligible impact

on the quality of tracking for the image sequences we use.



Chapter 4

Single Object Tracking

In this chapter we discuss techniques for tracking single, unoccluded, atomic objects.
We use the term atomic in the sense of an atom being the smallest indivisible unit,
meaning that the object is identified by only one of the modalities presented in the
previous chapter. The combination of an identifying modality and the observable
parameters of that modality (size, color, shape, etc.) constitute an attribute of an
object.

In addition to solitary objects, the methods we cover can be applied to tracking
multiple objects simultaneously, but with degraded performance when similar objects
are close to one another or the objects occlude one another. Moreover, if the objects
to be tracked are physically linked (e.g., parts of a human body) or are identified by
multiple attributes, these methods ignore information provided by the inter-object
constraints or extra attributes that may provide greater robustness. Explicit ap-
proaches to multiple object tracking are presented in Chapter 5, and constrained
and multi-attribute tracking are investigated in Chapter 6.

Referring back to the exposition in Chapter 2, we cast the problem of visually

tracking an atomic object as one of following the area of the image that is the

40
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Figure 4.1: State update algorithm pipeline for a single PDAF tracker

best match to it. The Kalman filter predicts the most likely location and other
characteristics of this image area, indicating where to begin searching for it. In the
first section of this chapter, we discuss methods for finding and parametrizing a set
of hypotheses for good matches. The best match thus found is suitable for input to
a standard Kalman filter as the measurement. Later in the chapter we present the
Probabilistic Data Association Filter (PDAF) [5], an extension to the Kalman filter

that considers other highly likely alternatives.

4.1 The Measurement Process

The measurement extraction process is essentially a search for local maxima of the
image likelihood p(I | X) in the neighborhood of X, the state predicted from the
filter at time ¢. The geometric characteristics of the image areas corresponding
to these maximally likely states are derived as measurements Z. There are many
approaches to this problem, each of which trades off speed for thoroughness. Perhaps
the simplest class of techniques, which we call gradient ascent methods, follows from

the condition that p(I|X) is differentiable. Randomized methods such as simulated
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annealing [87] which sample p(I|X) at discrete locations, sequentially or in parallel,
have proven successful at finding global maxima of multimodal functions and do not
require differentiation in order to work. Alternatives to random sampling include
sampling over a regular grid in state space or using a quasi-random method such as
Antonov-Saleev [94] to achieve a Poisson-like distribution and thus avoid duplication
of effort by samples that are too close to one another.

In this chapter we use either gradient ascent or random sampling methods for
measurement extraction. The basics of each approach are covered in the next two
subsections. We have found that a hybrid of the two methods yields good results. An
algorithm for combining these techniques and an analysis of why such a combination

may be necessary or preferable are presented in the next chapter.

4.1.1 Gradient Ascent

Common gradient algorithms include steepest ascent and conjugate gradient [94].
These methods work as follows. Let the function to be maximized be f(X) = p(I|X),
and the starting point of the search be py = Z, the current predicted state. The aim
of the gradient algorithms is to construct a sequence of points {p;} that converge
to a maximum of f that is local to py,. Each new point p,;,; is derived from its
predecessor according to p;y1 = p; + A; 8, where g; is a direction derived (indirectly,
if using the conjugate method) from the gradient V f(p;). A; is a step size that can
be computed from minimizing f along an interval of the line passing through p;
in the direction of g;, or it may simply be constant. The algorithm is terminated
when | f(pit1) — f(pi)| < § for some small § or the number of steps taken reaches a
threshold N.

While conjugate gradient uses derivative information on f for efficiency, Powell’s

method [94] is a related algorithm that does not. Powell’s method is sometimes
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used in this dissertation, especially for the modified version of p(I | X) introduced
in Chapter 5. Unless otherwise noted, though, the gradient ascent technique used is
conjugate gradient.

We will now describe some specific methods of implementing gradient ascent
for the tracking modalities introduced in Chapter 3. Assuming that the objec-
tive function f(X) can be evaluated for any particular state, we can always ap-

proximate the partial derivative of f with respect to some parameter x in X by

of ~ [(XtAz) [(X Ax)

5% A , where Az is a vector that is all 0’s except for a small num-

ber Az assigned to the z parameter. The gradient can easily be constructed from
these approximated derivatives. For consistency, we use this method of gradient ap-
proximation for all three modalities, although some tracking modalities permit the
use of more direct gradient ascent methods.

For example, a method commonly used in snake tracking (introduced in [117]
and extended to the affine case in [18]) is to simply take the locations of the best
edges z(0),...,z(n — 1) found along the search normals of the predicted snake, use
these to parametrize a new B-spline, and create a measurement from this B-spline.
The maximal motion that can be estimated in this manner obviously depends on the
length of the normals.

The motion of textured regions can be directly estimated by solving the image
brightness equation I, u+I,0+1, = 0 [51, 54] (I,, I, are the spatial image derivatives,
I, is the temporal image derivative, and u, v are pixel velocities within the part of the
image of interest) subject to, for example, an affine constraint [9]. This approach can
be extended to estimate larger motions by using a multi-resolution image pyramid
to iteratively move from coarse to fine estimates [9)].

Gradient methods are often used to efficiently obtain a single best measurement

with which to update a tracking filter. A number of assumptions must be met to
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ensure their successful application. First, gradient ascent works best when p(I|X) is
unimodal. The user must also hope that the object state is changing slowly enough
that the filter can keep up if the algorithm is terminated after a maximum number of
steps (meaning that it may only get some fraction of the way to the true maximum
for each new image), or if the posterior is multimodal that the predicted state will not
wind up in another basin of attraction. Another assumption if there is multimodality
is that there will not be significant interference between modes, such as two modes
(the correct one and an incorrect one) merging and splitting, creating the possibility
of the filter making the wrong choice after the split.

These difficulties with gradient methods are why in many situations we favor other
algorithms that allow for faster state changes and multiple modalities in the state
posterior. These methods, though retaining the notion of locality around a predicted
state, shade into global optimization algorithms. We use gradient ascent methods
for measurement generation in some of the examples at the end of this chapter in
order to compare their performance to the randomized peak finder described in the

next section.

4.1.2 Random sampling

For speed and simplicity, we use a measurement generation method which we call
measurement sampling, adapted from the factored sampling approach of the Conden-
sation algorithm [59] (the Condensation algorithm is discussed in detail in Chapter 7).
Intuitively, we sample p(I|X) in the neighborhood of the current predicted state )2,
select those state samples most likely to be on its nearby peaks, and convert them
to measurements.

The random sampling method of measurement generation for a given tracking

modality obtains measurements by picking points from a distribution determined by
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the prior on the state p(X), computing their image likelihoods p(I | X), throwing
away all but the top fraction, and deriving the measurement parameters of what
remains. The form of the prior p(X) can be determined by learning from examples
if desired; we use a hand-tuned Gaussian.

In practice, N samples are taken from a normal distribution in the target’s state
space X centered on its current predicted state X. A hypothetical prior and one set
of samples derived from it are diagrammed in Figures 4.2(a) and (b). N and the
covariance of the distribution Xy are chosen to give adequate coverage to a “tracking
window” about the target. Furthermore, sampling from the normal distribution
ensures that the image likelihood function is examined more precisely where it is
expected to be highest. p(I|X) is computed for each sample by scoring the degree of
fit between the hypothesized target and the current image, as shown in Figure 4.2(c).
Finally, a winnowing step sorts the samples by their likelihoods and keeps only the n
most likely ones (n < N) to be converted to measurements for input to the tracking
filter. This last step is illustrated in Figure 4.2(d).

Several enhancements to this basic procedure are possible. First, we could enforce
a minimum distance in state space between samples to reduce the chance of multiple
samples being drawn from the same underlying image feature. Also, performing
gradient ascent on the samples, either before or after winnowing, would improve
their quality and consistency. Both of these steps are optional at this stage because
of the PDAF’s tolerance of multiple samples, but we show in the next chapter that

they are necessary for joint tracking.

4.1.3 Measurement Terminology

We use the following nomenclature to describe state and measurement parameter

subspaces for homogeneous and textured regions as well as snakes: X indicates
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Figure 4.2: Measurement generation. (a) Hypothetical prior distribution; (b) Prior
distribution on state with N = 500 samples; (¢) Hypothetical image likelihood func-
tion with samples; (d) Image likelihood function with n = 50 best samples.



47

the range of horizontal image locations of the target, Y is the range of its vertical
image locations, ® is its possible image orientations in radians, and .S is its possible
scales as a fraction of its initial size. Thus, image location variables in the state
are denoted by © € X and y € Y, orientations by ¢ € ®, and scales by s € S.
Other possible state parameters to be estimated from these measurable quantities are
velocity and acceleration. Horizontal image velocity and acceleration, for example,
are indicated by x € X and i € X, respectively. In all of the examples in this
dissertation, an object’s measurement space is simply its state space without any
temporal parameters.

Because the state of an object may be as simple as, for example, its image location
(x,y), we should note that the image likelihood p(I|X) is implicitly conditioned on
other object information. The color of a homogeneous region, the reference image
of a textured region, and the control points of a snake all go into the calculation
of the image likelihood and yet are not expressed explicitly in the state. Moreover,
what we call an object’s geometric image processing parameters are also part of this
calculation. The geometric image processing parameters are those that totally define
the shape of an object and are thus necessary to compute p(I|X) for their respective
modalities. For a region, they are the position z, ¢, size w, h, and orientation ¢ of
the rectangle, and for a snake they are the six affine parameters (o, G1,. .., @) in
Q. If not included in the state, the geometric parameters must be accounted for via
some other means.

As a matter of implementation, it is useful to define a formalism for referring to
these geometric parameters. This formalism, which we call the measurement key, is
also used as a means of constraint enforcement in Chapter 6. The measurement key
K for a particular object modality is a vector of functions k;, where k : X — R. Each

of these functions is named after the geometric parameter it corresponds to. The
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measurement key is different depending on the tracker modality and state space, but
in general we define Kpngion(X) = Kiregion(X) = (#(X), §(X), 0(X), h(X), $(X))"
and Knare = (q0(X), 1(X), 32(X), ¢3(X), 4a(X), G5(X)) "

We now explain the details of K using regions as an example. When state space
X contains X x Y x W x H x ®, the functions in K simply select the appropriate
entry of X € X. If, for example, X = (z,y,w, h, $)”, then #(X) = z, §(X) =y, and
so on. If state space does not contain all of the geometric image processing variables,
though, then some are left unspecified by this method. Suppose X = X x Y.
In this case constants are used for the unspecified parameters specifically, their
initial, user-chosen values: @(X) = w, h(X) = h, and ¢(X) = ¢. This functional

formulation also allows scale s (initially 1) and other quantities to be state variables.

If X = X xY xS, then #(X) =z, §(X) = y, 0(X) = sw, h(X) = sh, and $(X) = ¢.

An analogy is easily drawn between the geometric parameters of regions and the
affine representation of snakes. ¢y and ¢, are the relative translational components
of the affine parameters, and thus are equal to z — A, and 1y — f\y, respectively (f\z
is the mean x value of the initial positions of the B-spline template points and f\y

is their mean y value). o, @3, 44, and §5 are the rotational and scaling parameters of

G2 65) — (SCOS(¢) *Sin(d))) that

the B-spline. They are coefficients of a 2 x 2 matrix (51'4 i sin(6) s cos(d)

takes the initial shape of the B-spline to its current size and orientation. The snake’s
angle ¢ can thus be expressed as sin '(g) and its scale s as g,/ cos(¢). Henceforth,
we will use the names of the geometric parameters of regions with the knowledge
that we can convert back and forth to the snake parameters.

Although the random sampling procedure for measurement generation uses the
full state space, as noted in the previous chapter our model of image formation does
not currently account for an object’s velocity. Therefore velocity parameters in the

state never figure in the calculation of the geometric parameters described above or,
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consequently, the image likelihood p(I|X). This means that the temporal dimensions
of state samples are irrelevant to the image likelihood. In our results, we ignore them
by referring to only the non-temporal dimensions of the state sampling covariance
Y x. As a matter of shorthand, when state space includes velocity parameters such
as, for example, X x Y x X x Y, we describe only the relevant part of the sampling

. a2 0
covariance, or Xy = ( 5‘ )2 )
Y

Homogeneous Regions

The process of random sampling to obtain measurements is illustrated for homoge-
neous regions in Figure 4.3. The input image is the soccer player from the previous
chapter, and we would like to track his orange jersey. Allowing translation, rotation,
and scaling of the rectangle fit to the jersey, state space is X = X x Y x & x S. In
Figure 4.3(b-c), there are a large number of samples N = 2000 and measurements
n = 100, with a large sampling covariance about the predicted state in order to
explore most of the image: ¥y = ( 0 0[_]1 2 ) In Figure 4.3(d-e), the sampling
covariance is more focused: Xy = ( 4§0 0.??2 0 ). The number of samples N = 500
and measurements n = 10 are also smaller, and as a result the player’s orange socks
are not found, making the measurement distribution unimodal instead of bimodal.
For certain image conditions, a fast approximation to state sampling for homo-
geneous regions is offered by connected components (CC) analysis. This procedure
follows from the observation that the moments of the largest connected components
of pixels for which v(I(z,y)) is high frequently correspond to peaks in the image like-
lihood function p(I|X). The process, illustrated in Figure 4.4, approximates p(I|X)
when X consists solely of position by calculating v (I(x, y)) for each image pixel (z,y).

We then threshold these likelihoods to remove everything but the tops of the peaks

and perform some number E of morphological expansion operations to join pixels
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Figure 4.3: Random sampling for homogeneous region measurement generation. (a)
Predicted state; (b) Samples with large covariance (about predicted state); (¢) Mea-
surements for large covariance sample; (d) Samples with small covariance (about
same predicted state); (e) Measurements for small covariance sample.
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Figure 4.4: Connected components for homogeneous region measurement generation.
(a) Tracking window; (b) Mahalanobis distance of pixels in RGB space to skin color;
(c) Pixels over a threshold of color similarity; (d) Largest connected components of
skin-colored pixels (£ = 2); (e) Measurements derived from connected components.

separated by image artifacts such as video interlacing and camera noise. Next, we
compute the connected components (in the eight-connected sense) of what remains,
throw away CC’s whose areas fall below a threshold. Finally, a measurement is cre-
ated from each remaining CC by fitting an ellipse to it with principal components
analysis and using the major and minor axes the ellipse to define a rectangle.

With the CC method, the surface patch being tracked may project to multiple
regions if it is nonplanar, resulting in one target giving rise to multiple measurements.
This is not a problem for position estimation, but it prevents accurate computation

of the target’s image size and orientation. Moreover, thresholding color similarity
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inevitably omits some worthy pixels falling just below the threshold, as with the right
side the of face in Figure 4.4, biasing the measurement for that connected component.
The quality of the CC method’s results is best when p(I|X) has distinct peaks with
compact support.

A similar approach to extracting measurements by calculating the connected

components of thresholded grayscale images was reported by Kumar et al. [78].

Textured Regions

The state sampling process for a textured region tracker constrained to translation
is shown in Figure 4.5. The object of interest is the face of a player in a cropped
photograph of the 1926 New York Yankees baseball team. The multiple faces in
this group picture clearly illustrate the potential multimodality of p(I | X) and its
implications for measurement generation. For simple translation of the region, state
space is X = X x Y. In Figure 4.5(b-c), relatively many samples and measurements
(N = 3000,n = 50) are used, plus a large sampling covariance Xy = (140 % ).
Figure 4.5(b) shows the initial samples and 4.5(c) shows the measurements obtained
from the top fraction of the samples. The results of a smaller sampling covariance,

Xy = (19", ). and fewer samples and measurements (N = 250, n = 5) are similarly

displayed in Figure 4.5(e-f).

Snakes

The steps of the sampling process for a chess pawn-shaped snake constrained to
translation only are illustrated in Figure 4.6. Allowing only translation of the snake,
state space is X = X x Y. In Figure 4.6(c-d), a relatively large number of samples
N = 2000 and measurements n = 50 are used, as well as a large sampling covariance

Ty = (390 ,%0). A tighter sampling covariance is shown in Figure 4.6(e-f): Xy =
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Figure 4.5: Random sampling for textured region measurement generation. (a)
Predicted state; (b) Samples with large covariance (about predicted state); (c¢) Best
samples from large covariance; (d) Samples with small covariance; (e) Best samples
from small covariance.



(e)

Figure 4.6: Random sampling for snake measurement generation. (a) Predicted
state; (b) Canny edges in image (0 = 2.0, Tipyy = 0.25, Tpip = 0.75); (¢) Samples
with large covariance (about predicted state); (d) Measurements for large covariance
sample; (e) Samples with small covariance; (f) Measurements for small covariance
sample.
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(%3°,3)). The number of samples N = 250 and measurements n = 5 are also

smaller, eliminating the distractions of the gap between the chess player’s fingers

and the other pieces.

4.2 Filtering Methods

Kalman filtering [5, 69] is an efficient method for tracking when the distribution on
measurements is Gaussian. This filter is an algorithm for linear estimation of a set
of time-varying parameters typically called the state X. Suppose that the evolution

of the system at time ¢ is described by the dynamic equation:

Xt = FXt,1 + q (41)

where q; is a sequence of zero-mean, white, Gaussian noise with dynamic covariance

Q. The state is related to observable data Z by the measurement equation:

Zt =H Xt +r (42)

where r; is also zero-mean, white, Gaussian noise with measurement covariance R.
Using the previous (or initial) state estimate and the current data, the Kalman filter
arrives a new estimate for X by calculating the quantities in Table 4.1 (except for the
identity matrix Id, every variable not subscripted by ¢ — 1 is implicitly subscripted
by time t).

A common modification to the plain Kalman filter to handle nonlinearities in
the dynamic and measurement equations is the first-order Extended Kalman Filter
(EKF) [5]. A nonlinear dynamic equation X; = F(X;_;)+q, is linearized by assigning

the first term of the Taylor series expansion of F' about X;_; at each filter update
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X=FX, Predicted state

Z=HX Predicted measurement

P=F P, . F" + Q State prediction covariance
S=HPH” +R Measurement prediction covariance
v=27-17 Innovation

W =PHTS! Filter gain

X=X+Wv State estimate

P =(Id— WH)P State covariance estimate

Table 4.1: Kalman filter equations

to the matrix F. A nonlinear measurement equation z, = H(X;) + r, is dealt with
similarly by expanding H about X every filter update to obtain H.

Situations in which there are departures from the assumption that the posterior
is Gaussian require extensions to the Kalman filter. For example, noise might tem-
porarily create multiple measurements or cause the target-originated measurement to
disappear. Or we might be tracking 1" objects as independent entities, and thus ex-
pect there to be a persistent measurement for each one. Proper target-measurement
correspondences are maintained by continually computing the association probabili-
ties of the various possibilities.

Modifications to the Kalman filter to deal with these phenomena are often called
data association methods [5]. Such methods are ways of rationally modeling part
of the world outside of the state in order to estimate X more accurately. In the
course of visual tracking, occlusions, distractions, and multiple targets of interest are
common complications, so it seems natural to adapt data association techniques to
combat them.

Next, we examine an extension of the Kalman filter to a basic data association
filter, the Probabilistic Data Association Filter (PDAF) [5]. The three key steps of
a vision-based PDAF tracking algorithm are shown in Figure 4.1. These are: (1)

generate measurements, (2) weight them by association probability, and (3) update
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the state estimate based on the weighted measurements.

4.2.1 Probabilistic Data Association Filter

The measurement processes described above derive a group of candidate states for
each tracker. The Probabilistic Data Association Filter (PDAF) [5, 28] is an exten-
sion of the Kalman filter [5] that uses a Bayesian approach to the problem of data
association, or how to update the state when there is a single target and possibly no
measurements or multiple measurements due to noise.

The simplest form of data association is the nearest neighbor (NN) method [5, 28],
which picks the data closest to what is expected in order to update the state. With
some finite probability, though, this choice will be wrong, leading to biases in the
state estimate or outright mistracking. The PDAF, on the other hand, attempts
to hedge its bets by weighting the various possibilities. Weights are assigned to the
measurements based on two major assumptions. First, the PDAF assumes that there
is exactly one target, giving rise to one “true” measurement, which may sporadically
disappear either because the target is temporarily occluded or because of subop-
timal feature detection at any stage of the pipeline between the camera and (for
example) the edge detection algorithm. Second, the PDAF assumes that all other
measurements are “false” and arise from a uniform noise process.

The relevant step in the Kalman filter is the computation of the innovation v.
The PDAF introduces a notion of the combined innovation, computed over the n
measurements detected at a given time step as the weighted sum of the individual
innovations: v = Z?:l Biv;. Each (; is the probability of the association event ©;
that the ith measurement is target-originated. Also computed is [y, the probability
of the event that none of the measurements is target-originated (i.e., the target is

associated with the null measurement). These events encompass all possible inter-
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Figure 4.7: The data association problem. (a) No measurements (ellipse indicates
validation gate); (b) Multiple measurements; (c) Multiple targets.

pretations of the data, so >,/ ; = 1. The association probabilities are as follows

for a given time step:

b
b = —=— (4.3)
b + Zj:l €
64
Bi = —=— 1>0 (4.4)
b + Zj:l €

where e; = exp(—3v!'S 'v;) and b = (1 — PpPg)/Pp. Here Py is the probability
that the correct measurement is in the validation gate (explained below), Pp is the
probability that the measurement will be detectable if it is in the validation gate, and
@ is a variable dependent on the number and dimensionality of the measurements
[5]. For the tracking examples throughout this dissertation we will use values of
P; =0.99 and Pp = 0.9.

The validation gate is an ellipsoidal volume in measurement space centered on
Z, the measurement predicted from the current state estimate, and whose shape is
defined by S, the estimated covariance of the predicted measurement, such that the

probability of a target-originated measurement appearing outside of it is negligible.
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The size of the validation gate is set so that it contains o > 3 standard deviations of
the Gaussian distribution corresponding to S, making the probability of such an event
less than or equal to 0.01. Little accuracy is thus lost by disregarding measurements
falling outside the gate.

Limiting image processing to a tracking window, or small rectangular subimage
around the current target state [52], is a common approximation of a validation gate
on the image spatial component of the state. Here we implement a validation gate
through the sampling covariance 3.

Randomly sampling from a normal distribution and selecting the top fraction of
the samples as measurements, as we do, does not precisely satisfy the PDAF assump-
tion of a uniform distribution of false measurements, but it is usually a reasonable
approximation. Multiple measurements coming from the true, target-originated peak
in the image likelihood function p(I|X), as seen in Figure 4.3(c) and (e) and Fig-
ure 4.6(d) and (f), are tightly clustered in one part of the validation gate rather
than uniformly distributed throughout it. This is a harmless departure from the
uniformity assumption because the effect of the PDAF association probabilities is to
average the contribution of the measurements to the state estimate, and measure-
ments tightly arranged around a maximum of p(I|X) average out to that maximum.

Measurements from false, non-target-originated peaks in p(I|X) are a different
matter. Many false peaks are truly due to noise sources such as the atmosphere (a
factor that is more important outdoors and over long distances), camera, and video
capture device. It is also reasonable to model some dynamic scene elements as noise
because of their unpredictable movements and ability to be appear and disappear,
such as reflections off of a rippling water surface. However, many scene elements
other parts of a complex object being tracked, a static background, other moving

objects, etc.—are too persistent to be regarded in this fashion. If peaks in p(I|X)
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corresponding to such visual phenomena are weak compared to the target-originated
peak and uniformly distributed, random sampling will generate measurements from
these peaks relatively uniformly and their influence will be cancelled out. If the false
peaks are strong enough, though, measurements from them will be generated dispro-
portionately, biasing the PDAF filter’s state estimates. We investigate techniques
for successfully tracking when there are multiple persistent peaks in p(I|X) in the
next chapter.

As a final note in this discussion of the PDAF, the introduction of association
probabilities alters the calculation of the error covariance of the state estimate P
given in Table 4.1. For the standard Kalman filter, P is independent of the measure-
ments, but the uncertainty of the state estimate with the PDAF filter is highly depen-
dent on the data. Specifically, P = S, P+ (1—=10) PC+13, where P¢ = (Id — W H) P

and P =W [Y" Bv, vl —v "] WT (see [5] for a derivation).

4.3 Results

Some examples of PDAF tracking are given below in Figures 4.8, 4.10, and 4.11 for
homogeneous regions, Figures 4.12 for snakes, and Figures 4.9 and 4.13 for textured
regions.

Figure 4.8 illustrates the resistance of the PDAF to distractions due to noise. To
perfectly control noise conditions, we created a computer graphics simulation of red
circles on a black background. There is one target which moves in a counterclockwise
elliptical orbit at a rate of 0.02 radians per frame and 50 random distractors from
a uniform distribution in each frame. The target has a state of X = (z,y) and the
same measurement parameters; it is tracked with a homogeneous region tracker. 100

samples are chosen with a sampling covariance of Xy = ('9° /). In one series of
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(a) (b)

Figure 4.8: PDAF: Tracking a synthetic, circular homogeneous region with uniform
noise (CG). (a) Frame 0 with the initial position and ground truth for the entire
orbit overlaid; (b) Frame 300 with a history of estimates at 25 frame intervals.
experiments, only the single best sample was used as a measurement. The tracker
was able to follow the circle through a full orbit in only 5 out of 20 trials. In another
series of experiments, the 10 best samples were used as measurements. This tracker
was much less vulnerable to distraction, and succeeded in tracking the circle through
a full orbit in 17 out of 20 trials. Two representative frames from a trial of the latter
series are shown in Figure 4.8. The actual path followed by the circle is shown in
Figure 4.8(a) overlaid on the initial frame, and the estimates made by the tracker up
to frame 300 are drawn in Figure 4.8(b) at 25 frame intervals.

In Figure 4.9, a textured region tracker is attached to a mouse embryo as the mi-
croscope slide is moved and the embryo is poked and rotated with a probe. The state
of the tracker is simply position and orientation: X = (z,y, ¢), and measurement
space is Z2 = X x Y x ®. As the figure shows, a tracker that uses gradient ascent
(Powell’s method) alone to generate a single measurement is thrown off when the
embryo moves abruptly after frame 60. A tracker that uses random sampling for mea-
surement generation, on the other hand, is able to recover from these agile motions.

100 0 0
).

In this case, 5 measurements are culled from 250 samples, where Xy = ( 0 100 0
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A homogeneous region tracker would be inappropriate because of the lack of con-
trasting color in the image, and a snake tracker around the contour of the embryo
would be able to estimate position but not rotation.

Figure 4.10 shows a homogeneous region tracker following the forearm of a person
as he walks from left to right. There is not much scaling, but the motion is fairly
dynamic, so the state includes the forearm’s image position, orientation, and the ve-
locities of these parameters: X = (x,y, ¢, %, 7, qﬁ) Each measurement is a translation
and rotation of a fixed size rectangle, so Z = X x Y x ®. The rectangles overlaid
on the figure indicate the 10 best measurements taken from 1000 samples in that
frame, where ¥y = (1§0 1§0 0%2). In general, the most probable measurements form
a tight cluster around the measurement predicted from the current state (except
where distractions induce a multimodal distribution).

Another example of homogeneous region tracking is shown in Figure 4.11. Here
the target is the orange front end of a race car approaching the camera along a banked
oval, so the state includes image position, orientation, and scale: X = (x,y, ¢, s).
Measurement space is Z = X x Y x ® x S. The tracker state at 40-frame intervals is

overlaid on the figure. For this example there are 5 measurements and 1000 samples,
50 0 0

0
and Xy = ( 00001 0 )
0 0 0 0005

In Figure 4.12, we track two human heads in infrared (IR) imagery as they pri-
marily translate and scale, one with a closed contour and the other with an open
curve. Ordinarily, an affine B-spline has six degrees of freedom, but we have found
that shearing and independent scaling of the vertical and horizontal axes are rare for
many simple object motions, so for this example the aspect ratios of the snakes are
constrained to stay constant, resulting in three degrees of freedom. This heuristic is

an approximation of what is learnable about appropriate priors on snake dynamics by

more sophisticated procedures [17, 18]. Thus, the state of each tracker is expressed
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(a) (b)

(c) (d)

(e) (f)
Figure 4.9: Gradient ascent (GA) alone vs. random sampling (RS): tracking a mouse
embryo with a translating, rotating textured region (MPEG). (a) GA state in frame

0; (b) RS state in frame 0; (¢) GA frame 60; (d) RS frame 60; (e) GA frame 120; (f)
RS frame 120. (Sequence courtesy of G. Danuser).
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(e) (f)

Figure 4.10: PDAF: Tracking a swinging arm with a translating, rotating homo-
geneous region (MPEG). (a) Region state in frame 0; (b) Region measurements in
frame 0; (c) State in frame 17; (d) Measurements in frame 17; (e) State in frame 34;
(f) Measurements in frame 34. (Sequence courtesy of J. MacCormick).
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Figure 4.11: PDAF: Tracking a race car with a translating, scaling, rotating homo-
geneous region (MPEG). (a) Region state in frame 0; (b) State in frame 40; (c¢) State
in frame 80; (d) State in frame 120.
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as X = (z,y,s) and Z = X x Y x S. Each tracker selects the best 5 measurements

from 250 samples; Xy = (1§U 1§0 0801). The good contrast provided by the IR means

that there are not many distracting edges, but the sequence shows the ability of the
PDAF /state-sampling method of snake tracking to estimate the state accurately.

A scaling, translating textured region tracker follows a jumping motorcyclist in
Figure 4.13. The tracker state is given by X = (z,y, s), and measurement space is
Z =X xY x S. Five measurements are taken from 1000 samples, where Xy =

(25 0

0 P, .
025 801)' Some biasing is introduced because the perspective on the motorcycle

changes slightly from frontal to a three-quarters view, an unmodeled transformation.
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Figure 4.12: PDAF: Tracking two faces with translating, scaling snakes (MPEG of
infrared imagery, Canny). (a) Snake states in frame 0; (b) Snake measurements in
frame 0; (c) States in frame 70; (d) Measurements in frame 70; (e) States in frame
140; (f) Measurements in frame 140.
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(c) (d)

Figure 4.13: PDAF: Tracking a motorcycle with a translating, scaling textured region

(MPEG). (a) Region state in frame 0; (b) State in frame 30; (c¢) State in frame 60;
(d) State in frame 90.



Chapter 5

Joint Tracking

In the previous chapter we assumed that there are no other strong, persistent features
in the image that have attributes similar to those of the tracked target. This is a
fair approximation for many visual situations, but it certainly does not hold when
tracking multiple similar or identical objects or one object with multiple similar
parts. If and when the states of the individual parts become proximate, one target-
originated measurement may often fall within another target’s overlapping validation
gate. Such persistent interference, were one to simply run a separate PDAF tracker
on each part, could lead to multiple trackers locked onto the same part. Even when
using a pure gradient ascent technique for tracking, which greatly reduces the size of
each tracker’s validation gate and hence its susceptibility to distraction, two similar
targets crossing paths may cause confusion.

An example of a visual situation that may lead to mistracking because it contains
multiple similar features is shown in Figure 5.1. This image was captured from a
video of two tandem kayaks being paddled alongside one another. One might want
to track the boats as a whole, the torsos of the paddlers in them, or even the tips

of their oars. Each of these objects can be readily characterized by color—the boats

69
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Figure 5.1: Ambiguity when tracking multiple objects simultaneously (captured from
a Quicktime video)

are red, two of the people are wearing yellow life jackets, and the blades of the oars
are bright blue—and thus would seem to be amenable to the techniques introduced
in the previous chapter. The problem is that multiple areas of the image satisfy each
of these descriptions. That is, searching the image for an oar blade by looking for
a homogeneous blue region will return multiple good candidates, or measurements.
Many persistent measurements can lead to an ambiguity of association, often making
a PDAF tracker peel off of the correct image feature and attach itself to a nearby
feature that is similar but incorrect.

This phenomenon occurs because PDAF state estimation is essentially solving a
weighted least squares problem, where the association probabilities are the weights
and the measurements are the data. Two or more measurements that persist in
the tracker’s validation gate will drive its state to a position that minimizes the
distance between the predicted measurement and the observed ones. Because of
the randomness of the state dynamics and noise (i.e., whether the measurements are
consistently refound from frame to frame), when image conditions again produce one
persistent measurement in the validation gate, the tracker may have slipped onto a

non-target feature. In particular, if there are multiple correctly-initialized PDAF



71

trackers looking (for example) for blue regions, because of their ignorance of each
other they might eventually all clump onto the same oar blade and erroneously ignore
the others.

This chapter reviews methods for dealing with this class of problems by sharing
information between trackers. If we are tracking all of the image features that may
mutually cause distraction, it seems reasonable to surmise that adding an overarch-
ing layer of reasoning may help ensure that the trackers are efficiently and correctly
distributed over the measurements. One such technique that we discuss is an ex-
isting extension to the PDAF called the Joint Probabilistic Data Association Filter
(JPDAF) [5]. The JPDAF often mitigates problems of persistent distraction that
occur when tracking multiple objects. The first part of the chapter investigates the
issues involved in adapting the JPDAF to vision; one limitation is that it can only
be used for groups of objects of the same modality. In the second half of the chapter
we introduce a new approach called the Joint Likelihood Filter (JLF). This method
captures the crux of the JPDAF but is readily applicable to mixtures of different
tracking modalities, is more efficient than the JPDAF, and incorporates explicit rea-

soning about occlusion relationships between objects.

5.1 Joint Probabilistic Data Association Filter

The Joint Probabilistic Data association Filter (JPDAF) [5] deals with the problem of
interference between multiple trackers by sharing information among separate PDAF
filters in order to more accurately calculate association probabilities. This joint
calculation of association probabilities for multiple objects is illustrated in Figure 5.2.
The essential effect of the JPDAF is an exclusion principle of sorts that prevents two

or more trackers from latching onto the same target.
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Figure 5.2: JPDAF pipeline

Suppose that we are tracking T objects, for which a total of n measurements
have been generated from the current image. These measurements may be generated
independently for each tracked object as in the previous chapter, but this leads to
difficulties as we will see below. Methods for deriving measurements for all objects
jointly are presented in Section 5.1.1. For simplicity, we assume for the moment
that every target is being tracked using the same tracking modality (in the sense of
Chapter 3). This means that every tracker shares the same image likelihood function
p(I|X). If this is not the case—if targets have different modalities—then the JPDAF
is not applicable. An alternative method that accommodates different modalities is
discussed in the next section.

A key notion in the JPDAF is that of a joint event ®, or conjunction of associ-
ation events Oj;.. The subscript ¢; has been added to the definition of association
event introduced in the last chapter in order to indicate the index of the target to
which measurement j is matched. For the PDAF there was only one target, mak-
ing this unnecessary. A particular joint event is thus defined over T targets and

n measurements as @ = /\;.l:1 @jt].. The event ©j indicates that measurement j
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is associated with no target—that is, it is assumed to be due to noise—while O,
amounts to a hypothesis that target ¢ is occluded or simply undetected.

A useful concept to consider at this point is that of a feasible joint event [5].
The probability of a given joint event ® depends, as with the PDAF, on the dis-
tances between each target’s predicted measurement and the actual measurement it
is associated with in ©, as well as the associated measurements’ image likelihoods.
Thus, one condition for @’s feasibility is that for every association ©j;, in ©, mea-
surement j is in the validation gate of target ;. However, an additional influence
on the probability of ® stems from the interaction of the various association events
in ®. Suppose that a single, unified measurement process generates at most one
measurement for each peak in the image likelihood function p(I|X) and that each
target induces at most one peak in p(I|X). According to these conditions, two kinds
of combinations of associations are logically incompatible or infeasible. In the first
case, a joint event © contains two associations O, ©;, such that ¢; # ¢, and 5 # 0,
implying that two different targets are responsible for the same measurement. This
is a contradiction. In the second case, © includes associations 0, 0;, such that
i # j but t; = t;. This amounts to an interpretation that a single target has spawned
multiple measurements also an impossibility.

Infeasible joint events thus have zero probability and can be disregarded. A joint
event is feasible only when each target is associated with one or no measurements and
each measurement is associated with one or no targets. To denote these constraints
mathematically, we first define a measurement association indicator ™ and target
detection indicator § [5]. 7; is defined to be the number of targets associated with
measurement j (7; = 0 indicates a hypothesis that the measurement is due to noise),
while d; is the number of measurements matched to target . A joint event is thus

feasible when 7; <1 for all measurements j and o, < 1 for all targets ¢. The process
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of generating all feasible joint events for an example set of targets and measurements
is illustrated in Figure 5.3.

Without some form of the preceding feasibility logic in the state estimation
pipeline, it is possible for nearby targets t; and t, to consistently be associated
with one measurement which properly belongs to £;. Over time, such a condition
will lead to their states inappropriately converging, and t, will have lost track of its
correct measurement.

Our assertion that each object causes a single peak in p(I|X) (or none if it is
fully occluded) is not always strictly true. Reflective surfaces around a target can
cause multiple copies to be perceived by the viewer; sharp shadows cast by the tar-
get, can project slightly-transformed copies of its silhouette nearby. We assume that
these imaging phenomena can be neglected as improbable for the bulk of visual sit-
uations. Also, the condition that a single measurement be created for each peak is
not automatically met. Using random sampling alone, the method of measurement
generation described in the previous chapter typically extracts multiple measure-
ments not attributable to noise for each target, violating one of the presumptions
of the JPDAF. Even if this problem is remedied by simply limiting the number of
measurements created by each tracker to 1, each of these measurements may still be
derived from the same image feature. As we will see, gradient ascent in fact becomes
a necessary ingredient in the measurement process for the JPDAF. In section 5.1.1
we address these issues by introducing a single, joint measurement process over all
targets that apportions measurements rationally.

For now, though, we assume that the pool of n measurements derived from the T
targets contains no more than 7" measurements that are due to a target-derived image
feature as opposed to noise, and that all of the target-derived measurements are due

to unique targets instead of the same one. Next we will describe how the JPDAF
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Figure 5.3: Joint events. (a) Targets and measurements; (b-m) Joint events gener-
ated. Joint event ®; in (g) is infeasible. Any joint event including an association O,
for which measurement j is outside #;’s validation gate is automatically disregarded
and thus not included in the enumeration.
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modifies the association probabilities computed for each tracker from the standard
established for the PDAF in order to account for the additional information available
from the other trackers.

Let wj(®) = 1if ©;, C © and 0 otherwise. From [5], the probability of associ-
ation between measurement j and target ¢ given measurements Z, ..., 7, is given

by Bt => e P(®O|Zy,...,Z,)w;;(©), where:

n

P(®|Z,....Z,) = s [[IN;]” [[(PH)" (1 — P (5.1)

j=1 t=1
where x contains terms for normalization and scaling, and N; is the Gaussian prob-
ability density N[Z;; th, S;,| for measurement j. Here Z; is the measurement value,
th is the predicted measurement value for target ¢;, and S;, is the associated inno-
vation covariance.

The above formula gives an estimate of the probability of each particular target-
measurement association. However, for a given tracker ¢ we cannot directly employ
the set of JPDAF-computed association probabilities 3;; in the same manner that
the association probabilities 5; would be used for the PDAF. This is because the
PDAF linearly combines innovations, in effect averaging the contributions of the
measurements in order to update the state. When, as with the PDAF, there is only
one persistent, target-derived measurement plus some noise, the noise will cancel out
over time because of its transient nature (if it is not too severe). If there are multiple
persistent measurements, though, as with the JPDAF, averaging their contributions
can lead to a state estimate such that the predicted measurement is the average of
the persistent measurements (depending on the proximity of the measurements to
the predicted measurement and the value of the measurement covariance R). In

other words, by preventing multiple trackers from clumping onto one feature the
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JPDAF could cause them to all congregate around some hypothetical mean feature.
This fact does not appear to have been noted in [5].

In order to avoid this phenomenon we reset the probability of one special associ-
ation event to unity and the rest to zero for each target, and then update exactly as
with the PDAF. This prevents any unwarranted combination of innovations. How
shall the the favored association be selected for each tracker t? It is tempting to
greedily choose the most likely association for each tracker t—the association event
©j; such that 3;; > B for all « # j. This does not work, however, because of
the possibility that the two targets ¢; and ¢, will be infeasibly associated with the
same measurement i.e., O;, and ©,,, are picked, but j; = j,. (This happens
immediately, for example, when there is one measurement Z; equidistant from the
predicted measurements Z; and Z, and the initial filter parameters as enumerated
in Table 4.1 are identical for the two trackers). Instead, we use those associations of
the most probable joint event ® which are not of the form ©jo. These association

events represent the most probable mutually feasible set available.

5.1.1 JPDAF Measurement Generation

One desirable characteristic of any approach to joint measurement generation is that
only one measurement be created for each peak in p(I | X). Consistently finding
multiple measurements within the same basin of attraction for a local maximum
violates a key assumption of the JPDAF and can lead to multiple targets becoming
associated with that peak by circumventing the JPDAF’s feasibility constraint. Oc-
casional deviations from the one measurement per peak ideal are acceptable but the
method of the previous chapter, which results in a fixed number of measurements n
for each target (typically, n > 1), must clearly be modified.

The joint method we use for T" targets is based on the random sampling technique
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presented in the previous chapter. First, N; samples Z; are randomly generated for
each tracker around Zj, target t;’s predicted measurement. Based on their measure-
ment image likelihoods p(I|Z;), some fraction of the less-likely samples is eliminated
from further consideration.

In the second step, each remaining sample Z; serves as the starting point for
gradient ascent to a local maximum of the measurement image likelihood function
p(I|X). We use the conjugate gradient algorithm [94] for hill-climbing, where the
gradient of p(I | X) is estimated numerically as described in the previous chapter.
The result of this step for each sample is Z;.

The purpose of the hill-climbing step is twofold. First, the resulting samples Z!
are, as a whole, better and less noisy (in the sense that they are more consistent
from frame to frame) candidates for state estimation. Second, states that are on the
slopes of the same peak of p(I | X) but somewhat separated by the randomness of
the sampling process tend to converge in state space X as they ascend (provided
certain local conditions on p(I|X) hold). If this is true, we can deduce that aggre-
gations of samples after hill-climbing will be relatively tightly clustered around local
maxima. Since the JPDAF relies on the measurement process to generate only one
measurement per peak on average, we can choose the best sample in each cluster as
representative of a peak.

The third step is therefore to try to choose one exemplar for each group of samples.
This is done by enforcing a minimum separation between samples in X'. First, the
hill-climbed samples are sorted by fitness. Starting with the most fit sample Xy,
all less fit samples X; such that | X, — X;| < A are eliminated. In practice, we use
a different threshold A, for each parameter of the joint measurement and eliminate
samples which are too close along any dimension. Unless otherwise noted, we use

Ax = Ay = 10 pixels, Ag = 0.1 radians, and Ag = 0.01. The purpose of A is to
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attempt to compensate for any lack of precision in the hill-climbing algorithm and
to ignore maxima whose basins of attraction are too small.

The thinning process is repeated for the next most fit sample still remaining, and
so on until the least fit sample left is reached. This is essentially a clustering process,
but we do not need a general clustering algorithm because of the assumption that
the gradient ascent step has brought the members of each cluster sufficiently close
together. This process yields a variable number of measurements n generally equal
to the number of tracked objects T'. The value of n can vary due to the randomness
of the sampling procedure and the degree to which the condition that the image only
has T" target-like features holds.

This method is applied in Figure 5.4 to the hypothetical posterior distribution
and the Yankees picture from the previous chapter. Compare Figure 5.4(a) to Fig-

ure 4.2(d) and Figures 5.4(b) and (c) to Figures 4.5(c) and (e), respectively.

5.1.2 Algorithmic Complexity

For a large number of targets, the JPDAF can become combinatorially problematic.
This is because the number of joint events ® which must be considered for each filter
update is the following exponential function of the number of validated measurements

n and targets T"

min(n,T) n i—1
Fn,T)=1+ Y <Z> H(T—]) (5.2)

Example values of F' for some different n and 1" are shown in Table 5.1.
Such complexity can often be avoided by partitioning the target set into groups
of targets with overlapping validation gates and running independent JPDAFs on

each one [28].
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Figure 5.4: Gradient ascent and minimum separation. (a) Best samples for hy-
pothetical posterior distribution after gradient ascent with Powell’s method. Each
maximum has multiple samples in almost the same location, so the minimum separa-
tion procedure results in 3 measurements; (b) Measurements resulting from gradient
ascent and minimum separation on best samples of large covariance; (¢) Measurement
for small covariance.
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n\T|1 2 3 4 5 6
0 |1 1 1 1 1 1
1 /2 3 4 5 6 7
2 |3 7 13 21 31 43
3 |4 13 34 73 136 229
4 |5 21 73 209 501 1045
5 |6 31 136 501 1546 4051
6 |7 43 229 1045 4051 13327

Table 5.1: Number of joint events as a function of the number of measurements n
and targets 7.

5.2 Joint Likelihood Filter

The JPDAF, though a useful advance over the PDAF, lacks certain desirable prop-
erties. First and foremost among these is its inapplicability to mixtures of different
kinds of trackers. This limitation stems from the JPDAF’s requirement that every
tracker have the same image likelihood p(I | X), meaning that a candidate image
feature for one tracker can be plausibly associated with any other. The joint target-
measurement association stage in which measurements are pooled between trackers
is only meaningful if such a stipulation is met. Thus, when tracking one object with
a snake and another with a homogeneous region, for example, the JPDAF must
be replaced by two independent PDAF trackers because there is no information
sharing between modalities. Furthermore, tasks that involve the tracking of mul-
tiple differently-colored homogeneous regions, different-appearing textured regions,
or differently-shaped snakes also require PDAF-based tracking. This is because dis-
similar color models (X, T), reference images I, or predicted edge locations A(7)
between trackers of the same modality also engender different image likelihoods,
leading to the same problem.

The JPDAF has another practical shortcoming. A key requirement which we

have tried to address above is its expectation that 7" measurements are generated for



82

T tracked objects. Although our measurement process, which combines random sam-
pling, gradient ascent, and minimum separation, works well in most circumstances
to ensure this, it can encounter difficulties when some of the targets overlap one an-
other. The primary reason is the JPDAF’s assumption that the image likelihoods of
multiple objects are independent when they actually are not. We can see this by ex-
amining the analog of Equation 2.2 for multiple object states (assuming conditioning

on previous images):

p(Xla e JXT|I) = kp(I|X17 s JXT)p(XIJ s JX'T) (53)

The last term on the right hand side of this equation, which we shall call the
joint state prior, is essentially embodied in the JPDAF by the joint feasibility
logic in Equation 5.1. However, thus far we have assumed that the first term on
the right hand side, which we call the joint image likelithood, can be factored as
p(I|Xy,...,Xp) =p(I|X;) - p(I|Xr). Evaluating image likelihoods independently
and taking their product as the joint event’s image likelihood is an approximation.
This approximation tends to break down when targets are very close or overlapping
because this is exactly when their appearances become dependent on one another.
When object A occludes or abuts object B, it affects our expectations about the ap-
pearance of object B and at least part of the immediate background of both objects.
The best case outcome of ignoring this effect is that noise in the state estimate can
increase, but at worst a systematic bias can be introduced in the position, angle, or
scale estimate that leads to mistracking when the overlap ends. In order to track
objects most accurately, it is necessary to evaluate their image likelihoods jointly.
In order to factor p(I| Xy, ..., X7) properly, we need a depth ordering, relative to

the camera, of the tracked objects. Knowing which object is in front of which when



they overlap is the key to properly predicting the image’s appearance 7(X;, ..., Xr)
from the objects jointly. When tracking non-planar objects, it is possible that two
objects will be shaped and positioned in such a way that they are mutually occlusive.
We neglect this configuration as highly unlikely for the types of objects that we track,
and let the relative depth D of some representative point on the object suffice for
that of the whole. Such a relative depth can be constructed straightforwardly from
an object’s state if it includes a numerical depth estimate. Otherwise, we can either
assume a fixed ordering of the objects being tracked, if warranted, or attempt to
deduce the ordering from the image.

The joint image likelihood effectively functions as the joint event probability in
Equation 5.1 since it encodes a measurement association (as well as the likelihood of
that measurement) for every target. By sampling the prior in state space for each
tracker we can build up a joint measurement Z’ and directly assess its likelihood
without incurring the combinatorial penalty associated with the JPDAF. Repeating
this joint sampling step yields a pool of joint samples. For feasibility reasons identical
to those outlined above, only the most likely joint sample can be used as a joint
measurement to update the tracker states. We call the process that results from
these changes the Joint Likelihood Filter (JLF). This details of this process are
presented in the next two sections.

As a final note, we should be careful to distinguish a situation in which 7" different
objects are to be tracked separately (possibly with an assortment of modalities)
from one where a single object will be tracked with 7" different modalities e.g.,
a person’s head is tracked by a snake for its silhouette and a homogeneous region
for its skin color. In this chapter we address only the former case. The latter
case implies a physical linkage between the 1" putative “objects” in the sense that

they are distinct attributes of the same underlying object. Consequently, there is a
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Figure 5.5: Joint Likelihood Filter pipeline

dependent relationship between the objects’ states, and the joint state prior is not
decomposable: p(Xy,...,Xy) # p(X;)---p(Xy). Constraints between objects are
covered in Chapter 6.

Of course, the state priors are not truly independent anyway because solid objects
cannot occupy the same point in space. Nonetheless, we assert that the approxima-

tion is close enough to be valid.

5.2.1 Joint Measurement Process

The JLF replaces the independent measurement generation processes for each tracker
with a joint measurement process, diagrammed in Figure 5.5.

The first step in the measurement process is to generate n joint samples. A given
joint sample X/, 1 < 4 < n, is built from T component samples X;, 1 < j < T,
each generated by one of the trackers in its state space X;. The component sampling
process is the same as that used by PDAF and JPDAF trackers: a sample is generated
either randomly from the distribution defined by the predicted state 5\(]- and sampling

covariance Xy, , or nonrandomly (when, for example, pure gradient ascent is being
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used). No gradient ascent is yet performed, however. The component samples are
then stacked to get a joint sample: X/ = (X,,...,X7)?, so X7/ = X, x ... x Xr.
Component measurements can be derived from component state samples via Z; =
H(X,). Associations, in the JPDAF sense, are implicit: target j is associated with
component sample Z;.

An example of a joint sample comprising a textured region and a snake is shown
in Figure 5.6(a). The textured region is tracking a chess pawn and the snake is
tracking a knight.

The second step for each joint sample is to pick the most likely depth ordering
of the T" component samples in it. If we are assuming a fixed ordering or the actual
depth of each object can be derived from state information, this is a constant-time
operation and the algorithm proceeds to step three. Otherwise, we attempt to deduce
the ordering in a principled way. To do this, all permutations of depth orderings are
enumerated, tagging each component sample with a depth order index in the process.
For example, if three objects %y, t9, t3 are being tracked, we hypothesize the follow-
ing set of orderings: {(t1,t9,13), (t1,13,t2), (t2, t1, t3), (t2, L3, t1), (t3, t1,ta), (L3, 2, t1)},
where (t;,t;,t;) indicates that D(t;) < D(t;) < D(t;). Different depth orderings
of non-overlapping component samples are visually equivalent, inducing equivalence
classes of depth orderings, so we automatically eliminate all but one representative
of each class. If none of the component samples of a joint sample overlap, there is
only one such class and thus only one depth ordering must be examined. In the
worst case, each sample overlaps every other sample and all T"! permutations must
be examined, but this occurrence becomes very unlikely for large T

Since there are two overlapping component samples in the joint sample of the
chess example referred to above, there are two depth ordering hypotheses. Hypothe-

ses corresponding to the pawn being in front of the knight and the knight being in
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front of the pawn are represented in Figure 5.6(b) and (e), respectively. For illustra-
tive purposes, nearer objects are drawn brightly and distant objects more darkly.

Let Dxs = {dy, ..., dKX_J} be the set of visually distinct depth order permuta-
tions of joint sample X/. From above, we have that 1 < KX;_I < T!'. Two options at
this point are: (1) Perform gradient ascent on the joint sample for each d; (a joint
image likelihood objective function is described in the next section) before choosing
the most likely ordering, or (2) Only do gradient ascent on the most likely order-
ing. The latter choice is at least as efficient in all situations as the former, often
much more so, and empirically works quite well, so we have adopted it for all of the
examples unless otherwise noted.

The third and final step of the joint measurement process is to select the most
probable of all of the joint samples X7 and convert it to a joint measurement Z7.
The component measurements Z, . .., Zq of Z7 are then plugged into Kalman filters
for their associated trackers. Only one measurement is used for state estimation
for the same reason outlined in the JPDAF section: linear combinations of joint
measurements (the analog of the JPDAF joint event) can result in incorrect image
interpretations.

The depth ordering of the joint state is derived directly from the depth ordering
of the joint measurement. Two consequences of this choice are that objects can
change their depth ordering from frame to frame (i.e., there is no model of solidity)
and that the joint tracker may assert that one object occludes another when their

states are only very close to intersecting.

5.2.2 Joint Image Likelihood

To evaluate the likelihood of a particular joint sample X and its depth ordering

Dx., the probabilities of its component samples need to be computed jointly. A
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key difference between this operation and the independent approach of the PDAF
and JPDAF is our ability to predict occlusions between objects. When one object is
hypothesized to be in front of another, our expectations about the occluded object’s
appearance change. Trackers of snakes will not expect edges to be found where they
are blocked from view, homogeneous region trackers will not expect occluded pixels
to fit the color model, and textured region trackers will not expect occluded pixels
in the comparison image to match the corresponding pixels in the reference image.
Specifically, Dxs allows us to mask [76, 98] occluded portions of objects such that
the occluding objects take precedence in the formation of a jointly predicted image
7m(X1,...,Xy). Those pixels which are predicted to be obstructed are ignored and
those predicted to be visible are matched normally.

The masking procedure induced by Dx is fairly simple. Its output is a binary
mask M for each target ¢; that is the size of the image I. M;(xz,y) = 1 indicates
that the image pixel I(z,y) comes from target t; (i.e., t; is visible at that pixel)
and M;(z,y) = 0 indicates that the pixel belongs to either another object or the
background. We are assuming that objects are completely opaque and that the
resolution of the imaging device is high enough to neglect the effect of multiple
objects contributing to individual pixels.

Iterating over the jointly-tracked objects from closest to farthest away, M; is
constructed for each object by setting every pixel (z,y) in the object’s interior to 1
provided that M, (z,y) = 0 for all objects ¢; for which D(¢;) < D(t;). The interiors of
regions are simple rectangles, but the frames of homogeneous regions are not masked
because they represent expectations about the background. The interiors of periodic
(closed) snakes are defined by their B-splines, and the interiors of nonperiodic snakes
are completed by connecting their endpoints. The latter method assumes that the

connecting line will not cross any segment of the spline itself.
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Figure 5.6: Joint Likelihood Filter: Hypothesizing depth orderings. (a) Joint mea-
surement; (b) 1st depth ordering; (¢) 1st knight mask; (d) 1st pawn mask; (e) 2nd
depth ordering; (f) 2nd knight mask; (g) 2nd pawn mask; (h) Pawn reference image;
(i) 1st pawn comparison image; (j) 2nd pawn comparison image.
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Mnign: is shown for the two depth ordering hypotheses of the chess example in
Figure 5.6(c) and (f). Mgy is shown for those two hypotheses in Figure 5.6(d) and
(g). Note the alteration in shape of the mask when an object is partially occluded.

A basic technique behind the formulation of the independent image likelihoods
for the various modalities, as set out in Chapter 3, is to compute a mean match
value v over the extent or around the perimeter of the object. This mean match
is transformed into a likelihood by an exponential or sigmoidal function that takes
better mean matches closer to 1 and worse ones closer to 0. For homogeneous regions,
the sum of the distances between every pixel and the color model is calculated, then
divided by the area of the region’s rectangle (with some additional complications
involving the inhibitory frame). Virtually the same operation is carried out for
textured regions (with a different model for each pixel and no inhibitory frame). For
snakes the sum of the distances between the predicted locations and the edges found
along the normals is divided by the number of normals.

Under the JLF, the set of masks {M;} is used to modify this technique for two
reasons. First, some pixels are erroneously counted more than once by the PDAF and
JPDAF when tracked objects overlap; each pixel should only be used as evidence by
one tracker. Second, the masks are used to try to ensure that each pixel is counted
by the correct tracker. An approach that meets these criteria only counts target
pixels that are predicted to be visible in the calculation of that target’s mean match
value.

For a textured region ¢;, this means that only those interior pixels (z,y) for which
M, (z,y) = 1 contribute to the mean match value. That is, portions of the region’s
interior that are not visible do not have a match value computed and are subtracted
from the effective area. This method is illustrated for the textured-region pawn of

the chess example in Figures 5.6(h),(i), and (j). Figure 5.6(h) shows the reference
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(a) (b)

Figure 5.7: Joint Likelihood Filter: Depth-independent object interactions. (a)
Nearby snake occludes expected background (frame) of homogeneous region; (b)
Nearby region limits edge detection along normals of snake.

image for the pawn. Figure 5.6(i) shows the comparison image for the hypothesis
that the pawn is in front of the knight and Figure 5.6(j) shows the comparison image
for the opposite hypothesis. In the latter case, the nearer knight masks out the area
of pixels shown in blue.

Homogeneous regions are slightly more subtle. The central area is handled in
the same fashion as textured regions, but the inhibitory frame is not in the mask
M, of the tracker. Rather, only those pixels (x,y) in the inhibitory frame for which
M, (z,y) = 0 for all i # j are counted. The same method is also used for snakes: only
edges found at locations (z,y) such that M;(x,y) = 0 for all i # j are considered.
This pixel exclusion is shown in Figure 5.7(a) and (b) for homogeneous regions and
snakes, respectively.

Finally, any pixels in the interior, frame, or on the normals of an object that are
also outside of the image are treated as masked out.

The mechanics of masking, though important, are only part of a proper joint for-

mulation of the image likelihood. Without an additional processing step, a different
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form of the state collapse that joint methods are intended to eliminate is possible.
Consider a tracking task involving two textured regions. Joint measurements for
which the component measurements overlap will result in one of the regions having
some fraction f of its area masked out. As f — 1, the image likelihood for that
component will be based on fewer and fewer pixels. Suppose that for some large
f the visible portion of the region perfectly matches the corresponding part of the
reference image. The mean match for such a component measurement will be the
same as if the entire region were visible and perfectly matched to the reference image.
The latter scenario is much less probable than the former, so once they go into a
large or total occlusion configuration the trackers are unlikely to separate.

Such “stickiness” can occur even if the two textured regions are subsequently both
completely visible. Since we are assuming that the number of objects is known, if two
image features match the targets then the trackers should know that there cannot
be a copy hiding somewhere else. Clearly, we need a heuristic that favors image
interpretations containing more visible objects over those with fewer visible ones, all
else being equal. Not dividing by the area (i.e., going from the mean match to the
total match) would solve this problem, but normalization by the area is necessary to
eliminate a bias toward smaller measurements.

Since they represent a lack of information, masked pixels should not count for or
against a particular hypothesis, whereas the above formulation tends to increase the
likelihood of a masked hypothesis. This intuition can be implemented by classifying
visible pixels as either positive or negative evidence for the hypothesis that the target
is in a certain state, and putting masked pixels in a third, neutral category rather
than ignoring them. What makes a pixel a match, or positive evidence instead of
negative, varies between modalities, but fundamentally it is a threshold T in . To

quantify this approach, matching pixels will be assigned a value of 1, non-matching
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pixels will be assigned a value of —1, and masked pixels will get 0. Measurements
with more total evidence in their favor are assigned a higher likelihood than those

1
Tre = on the

with no or negative evidence by using the sigmoid function sig (z) =
sum of the pixel match values.
Specifically, we replace the independent image likelihoods p(I | X) for homo-

geneous regions, textured regions, and snakes from Chapter 3 with the following

component image likelihoods p’ (I|X;):

Textured region

piregion(l ‘ X]) = Slg( Z CL(JI, y) ) w;]rﬂegion(xJ y)) (54)
T,y€lp
where
1 if Mj(xi y) =1A (IR(xay) - Ic(CE, y))2 S Ttregion
wijregion('ray) = —1 if M]'(.’I), y) =1A (IR(T,y) — Ic(.’I), y))2 > Ttregian (55)

0 otherwise

Homogeneous region
Recall that C is the interior of the homogeneous region and F' is its inhibitory frame.

piregion(l ‘ X]) = Slg ( Z CL(CE, y) ’ w}{region(xi y)) (56)

z,yeCUF

where
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( if M](I‘,y) =1A (Tay) € C A ’Y(I(T,y),T) S Thregion Vv

Mz(fr;y) =0 v i %] A (:L",y) € F A ’Y(I(l‘,y),T) > Thregion

;biregion(x’y) — it Mj(z,y) = 1A (z,y) € C AN yI(2,y), T) > Yhregion V
Mz(ray) =0Vi 7&] A (r,y) €EF A V(I(T,y),T) S Thregion

0 otherwise

(5.7)

Snake

Let z,(k), z,(k) be the z and y image coordinates, respectively, of the best edge (if

any) found along normal k. We have:

Panare(L| X;) = sig (Zzzl(k) Vinane(K)) (5-8)
where _
(1 if My(zo(k), 2, (k) =0V i 7 5 A [A(K) — 2(k)| < Tonake
I if Mi(z2(k), 2y (k) = 0V i # j A A(k) = 2(k)| > Tinare

V edge not found

0 otherwise

(5.9)

For the Joint Likelihood Filter, it is not necessary to choose appropriate values of

0% to weight each modality’s contribution to achieve a normalized “common” scale.
This is because the value of ¢/ for each modality has the same range of [~1,1]. A
common range for ¢/ is achieved through a different scale factor: the threshold Y.

The results in this dissertation, unless otherwise noted, use the values Y 4i0n = 30,
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Y hregion = 3, and Y a6 = L/2, where L is the length of one of the snake’s edge-search
normals.

Let the joint tracker, which has 7" component trackers, consist of a set H of
homogeneous region trackers, a set T of textured region trackers, and a set S of
snake trackers such that T = |H|+ |7 |+ |S|. With the component image likelihoods

defined as above, the image likelihood of the joint sample X7 is simply their product:

pJ(I|XJ) = H piregion(I|X]') H pgregion(I‘Xj) H pinake(I|Xj) (510)

t;€H L eT t;€S

It is straightforward to perform gradient ascent on the joint image likelihood to
improve the component samples. Note that gradient ascent does not change the
depth ordering of the component samples, however. We have also observed better
results using Powell’s method [94] rather the conjugate gradient method for the joint
image likelihood, possibly because of the effect on its differentiability introduced by

the nonlinear match classification step.

5.3 Results

Figure 5.8 illustrates the superiority of the JPDAF over the PDAF for tracking
multiple objects in close proximity. In this example, five airplanes flying in formation
are tracked using textured regions. The planes scale slightly, but their primary
motion is translational and rotational, so the state of each tracker is expressed as
X = (x,y, ¢, &,y), making measurement space Z = X x Y x ®. For both the PDAF
and JPDAF examples, each tracker selects the best 3 of 100 samples, where the state

. . . 50 00
sampling covariance is Xy = (

050 0%1). Each of these samples is then improved
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using Powell’s method for gradient ascent on the image likelihood function p(I|X).
For the PDAF, each tracker’s set of hill-climbed samples is thinned independently
by enforcing a minimum separation of 10 pixels horizontally and vertically, and 0.1
radians. The resulting samples become the measurements for each tracker. The
JPDAF creates a combined pool of measurements by thinning the union of the two
sets of hill-climbed samples using the same minimum separation.

The image likelihood function has a peak for each of the five planes, and the
independent sampling and hill-climbing done by the PDAF trackers results in much
instability. From frame to frame, each tracker may choose the correct peak as its
measurement or wind up with the one to the left or right. This engenders much noise
in the state estimation at best, but when the wrong peak is consistently used as the
measurement, a tracker can be pulled off of the right plane. This phenomenon is
illustrated in the figure from frame 0 to frame 20. The JPDAF avoids such eventu-
alities by rejecting two trackers claiming the same measurement as infeasible. The
mistracking of the far right plane by the PDAF at the end of the sequence is due to
the difficulty of matching at the edge of the image. The JPDAF most likely tracks
this plane successfully because even if the rightmost tracker does not find its peak,
the tracker to its immediate left does, adding the measurement to the shared pool.
This effectively increases the number of samples examined by each tracker.

Figure 5.9 demonstrates the efficacy of the JPDAF vs. the PDAF for tracking the
faces of two people in profile as they walk toward and then past one another. Using
translating homogeneous regions with identical dimensions and the same skin color
model, the state of each tracker is expressed as X = (z,y, 4, ¢), making measurement
space Z = X xY. For both the PDAF and JPDAF examples, each tracker selects the
best 10 of 50 samples, where the state sampling covariance is Zx = (3% ,3,). Each

of these samples is then improved by performing conjugate gradient ascent on the



96

(b) JPDAF

Figure 5.8: JPDAF: Handling nearby textured regions (MPEG). (a) Frame sequence
using five PDAF trackers; (b) Frame sequence using JPDAF tracking.
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image likelihood function p(I|X). For the PDAF, each tracker’s set of hill-climbed
samples is thinned independently by enforcing a minimum separation of 10 pixels
horizontally and vertically. The resulting samples become the measurements for each
tracker. The JPDAF arrives at a combined pool of measurements by thinning the
union of the two sets of hill-climbed samples using the same minimum separation.
With these parameters, the JPDAF successfully tracked both heads through the
crossing, maintaining the correct associations, in 10 out of 10 trials. The PDAF
failed in 10 out of 10 trials. In every case, the tracker assigned to the head of the
person walking to the left was distracted by the rightward-moving head, most likely
because it was nearer to the camera and thus larger, resulting in both trackers locking
onto the same image feature.

The ability of the Joint Likelihood Filter to infer the depth ordering of tracked
objects is illustrated in Figure 5.10. A white pawn chess piece is tracked by a textured
region as it moves behind and is thus partially occluded by a white knight, which
is tracked by a snake. There is negligible scaling or rotation over the duration of
the sequence, so the state of each tracker is simply its image position and velocity,
and is expressed as X = (z,y, &, 7), making each component’s measurement space
Z = X xY. The snake has 16 segments. Measurement generation is done using pure
gradient ascent with Powell’s method. A tracker’s outline, normally red or green,
is drawn in gray when the joint measurement and its depth ordering indicate that
it is partially occluded. The fact that the pawn is behind the knight during the
middle section of the tracking sequence is correctly deduced. There is some noise in
the occlusion inference, however, at the very beginning and end of the two pieces’
overlap because it is based on so little information.

Another example of depth-order inference is given in Figure 5.11. Here, two

homogeneous regions with states X = (z,y) and the same measurement parameters
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24
(b) JPDAF

Figure 5.9: JPDAF: Handling crossing homogeneous regions (MPEG). (a) Frame
sequence using two PDAF trackers; (b) Frame sequence using JPDAF tracking.
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60 100

Figure 5.10: Joint Likelihood Filter: Deducing the occlusion relationship between a
textured region and snake (MPEG).
track the colorful t-shirts of two people shaking hands. Powell’s method is used to
hill-climb the best 3 of 250 joint samples (using Xy = (2 ,),) for each component
sample of the joint sample); the best one of these three is used to update the state.
The Joint Likelihood Filter (JLF) also matches the ability of JPDAF to track
multiple crossing objects, as illustrated in Figure 5.12. In this example, two airplanes
flying in close formation are tracked using textured regions as they overlap and
separate. The planes scale, translate, and rotate, so the state of each tracker is
expressed as X = (z,y, ¢, s), making measurement space Z = X x Y x & x S. In

the PDAF example, each tracker selects the best 5 of 250 samples, where the state
500 0 0

sampling covariance is Xy = (§ % 9, J ). Each of these samples is then improved
00 0 001

using Powell’s method for gradient ascent on the image likelihood function p(I |

X). Finally, each tracker’s set of hill-climbed samples is thinned independently by
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Figure 5.11: Joint Likelihood Filter: Deducing the occlusion relationship between
two homogeneous regions (MPEG). (Sequence courtesy of J. MacCormick).

enforcing a minimum separation of 10 pixels horizontally and vertically, 0.1 radians,
and 0.01 units of scale. In the Joint Likelihood Filter example, the best 5 of 250
joint samples (using Xy for each component sample of the joint sample) are also
improved using Powell’s method on the joint image likelihood, and the best of these
is used to update the state.

Calculating their image likelihoods independently, each plane tracker is attracted
by the two nearby matching features in the image as they move together. When the
two planes separate, both often follow the same feature, resulting in mistracking. By
calculating their image likelihoods jointly, both trackers separate properly when their
corresponding image features separate. This is because of the built-in preference,
when the image supports it, for an interpretation that there are two visible objects
over an interpretation that one visible object completely occludes the other. The
random sampling technique for measurement generation is vital here because even
using the joint image likelihood, a pure gradient ascent tracker can get stuck in a
local minimum as the planes separate. The nonlocality of random sampling allows
the trackers to jump out of suboptimal states as the planes separate unambiguously.

State estimation and the inferred depth ordering are somewhat noisy during the

period of greatest overlap because of the identical coloration, shape, and markings
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of the two planes, and because of the poor resolution of the image.
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120 160 200
(b) PDAF

120 160 200
(c) Joint Likelihood Filter

Figure 5.12: Joint Likelihood Filter: Handling crossing textured regions (MPEG).
(a) Reference image; (b) Frame sequence showing states of two PDAF trackers; (c)
Frame sequence with JLF tracker’s state.



Chapter 6

Constrained Tracking

An important assumption of the PDAF, JPDAF, and Joint Likelihood Filter al-
gorithms is that the incidence of occlusions and distractions caused by untracked
objects or other visual phenomena is reasonably approximated by a uniform or Pois-
son noise process. When this approximation breaks down, as when such occurrences
are actually due to persistent features of the visual environment, these tracking fil-
ters can yield biased results or mistrack. In the previous chapter our strategy for
improving robustness for the target of interest was to try to track as many potential
distractors as possible, allowing a principled prediction of their visual interactions.
However, sometimes the characteristics of the background may change as the object
moves or there may be too many distractors for this approach to be efficient. In this
case the selection of what area of the object to focus on and what tracking modality
to use become paramount in determining tracking accuracy.

With regard to making this selection, it is useful to distinguish between an object
attribute, as defined in Chapter 4, and what we call a part. A part is a spatially
distinct image feature physically linked to the larger object. Fundamentally, a part

is what a tracker tracks, while an attribute is how the tracker identifies its target.
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For example, a person’s face may be found in an image by searching for a skin-
colored region; or a pattern of textures matching the arrangement of the eyes, nose,
and mouth; or the specific shape of the silhouette of their shoulders, neck, and head
against a contrasting background. The face is a part (of the person’s body), and the
different ways of finding and tracking it are all attributes. Conversely, a person’s
hands, arms, and face, if bare, can all be identified by the same color attribute, but
are separate image features and thus termed parts.

We have observed that when the noise approximation of the PDAF model is
violated, tracking performance does not collapse all at once but rather by degrees.
That is, the more an object is occluded or the better a distracting background feature
matches an attribute used for tracking, the more severe the deterioration of accuracy
and the greater the chance of outright failure. This means that larger objects or
objects defined by many attributes may be less susceptible to distraction than smaller
or singly-defined objects, suggesting a strategy for improving tracking robustness.

The approach we take here to the problem of persistent distractors is to try to
reduce their incidence, and hence their influence, by defining a target as a conjunc-
tion of parts and/or attributes. As more image features are used to identify a target,
the number of visual phenomena that may potentially distract the tracking process
is reduced. Even if something of the same color is near the target, for example, it
may be of the wrong shape, or another part of the object may not be distracted, al-
lowing tracking to proceed without interference. An atomic tracker with temporarily
weak discriminatory power can overcome difficult image conditions because of the
constraints imposed by its linkage to other trackers. These force consideration of the
entire ensemble of parts and attributes simultaneously when interpreting the image,
helping to rule out incorrect alternatives. Constraints are only applicable, of course,

when we are tracking a target complex enough that it has multiple resolvable parts
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and/or attributes. This is certainly true of many of the types of objects that we wish
to track, such as people or cars, because they are amenable to description as a set of
simpler, geometrically-connected features under most image conditions.

In this chapter we analyze the implications on the tracking process of the knowl-
edge that two or more of the targets are physically connected. A linkage between
targets means that they are parts of some larger object, and that their states are
therefore not independent. This disallows the decomposition of the joint state prior
p(Xyq,...,X7) = p(X;)---p(X7) in Equation 5.3 that is a vital step in both the
JPDAF and Joint Likelihood Filter multiple-object tracking algorithms.

As with the joint image likelihood p/(I | X7) in the previous chapter, we need
a more complex formulation of p(X;, ..., Xy) that takes into account the interac-
tions between objects. Rather than predicting the visual results of bringing multiple,
possibly independently-moving objects into a proximate or overlapping relationship,
though, the joint state prior will be concerned with how multiple linked objects influ-
ence one another’s states, even at a distance. Incorporating constraint information
such as this can have a salutary effect on tracking performance by (a) shrinking search
space, making processing faster for each frame, and (b) discounting or eliminating
from consideration joint events/measurements that do not reflect expectations about
the interrelationship of the linked parts.

In the next part of this chapter we introduce an extension to the Joint Likelihood
Filter (JLF) called the Constrained Joint Likelihood Filter, or CJLF, that implements
inter-part constraints efficiently and simply. We then present results demonstrating
how the CJLF improves tracking performance in many visual situations over the
previously described algorithms, and enables certain tracking tasks to be carried out

for which those algorithms are not suited.
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6.1 Constrained Joint Likelihood Filter

The JLF assumes that targets move independently of one another. An object such
as a human body, though, violates this requirement when viewed as a group of
parts: the connections between the arms, head, torso, etc. limit the possible range
of their relative positions and motions. The expectation that parts or attributes of a
complex tracked object will be in a particular configuration is extra information that
may help distinguish the object from the background or other objects. In this section
we describe modifications we have made to the JLF to encode these relationships.
We call this method the Constrained Joint Likelihood Filter (CJLF), diagrammed
in Figure 6.1.

The key idea behind the CJLF is an elaboration of one of the most basic kinds
of constraints: limitation of the number of parameters in an object’s state, which
in turn reduces the size of its measurement space. We have been using this form
of constraint for atomic trackers already when we analyze the object, the tracking
task, and the visual environment in order to decide whether to allow the tracker to
translate, scale, rotate, or even shear (for snakes). If the object to be tracked only
slides back and forth horizontally, for example, or rotates in place, then there is no
reason to give the tracker more than the minimal degrees of freedom required to
follow that class of movement. To do otherwise only provides the tracker with an
opportunity to mistrack along an extraneous state dimension.

For a multi-part or multi-attribute object, there are multiple trackers for which
this kind of decision must be made. The CJLF simply formalizes the commonsense
notion that a minimal state description of the entire object (or, more exactly, that
portion which is being tracked) implies certain correlations between and limitations

on the states of its constituent parts and attributes. As an example, suppose that
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we want to track the headlights of a truck driving directly toward the camera. A
naive approach is to give each tracker a state with translation and scale parameters:
Xieriight = (z1, y1, 1) and Xyignuighe = (@r, Yr, 5,). However, we know that the two
lights are physically connected by the truck chassis and as such cannot move inde-
pendently. Our state description is thus underconstrained, and a cursory analysis of
the frontoparallel geometry of the truck grille indicates that X gn, can be imme-
diately derived from X,;nuign: (0r vice versa). In other words, only 3 rather than 6
variables are necessary to fully describe the system, though image processing at both
locations of course yields more robust estimation than at one alone.

Ordinarily, a special-purpose tracker with a customized image likelihood function
p(I|X) is created for tracking a complicated object like the one in the example above.
The CJLF is a framework for achieving the same performance as a customized ap-
proach, but in a flexible fashion that avoids the construction of a specialized image
likelihood function for each new tracking task. Rather, the CJLF works by providing
a small set of rules for composing the simple, atomic trackers that we have already
developed into more complex assemblages for which the joint image likelihood re-
mains a product of component likelihoods. The rationale for this decision is twofold:
(1) to reduce the amount of time spent on analysis and code writing for novel track-
ing tasks by permitting code reuse, and (2) to provide a standard interface for new
methods to easily be integrated with existing ones.

The compositional primitives used by the CJLF are based on intuitive physical
relationships such as rigid links, hinges, and fixed depth orderings. Given a set of
parts or attributes with unconstrained state spaces X7, ..., X, these rules serve as a
guide for paring them down to their minimal, constrained forms: &7, ..., X;.. When
the paring removes all degrees of freedom of a tracker, as would occur with one

of the headlights from the example above, its state space becomes empty. It is still
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Figure 6.1: Constrained Joint Likelihood Filter pipeline

desirable to perform image processing for that tracker (such as looking for the second
headlight), so as a matter of bookkeeping the notion of the tracker is retained. This
process is the primary method by which constraints are introduced into the joint
prior on states p(Xy,..., Xr).

In addition to reducing the degrees of freedom available to some of the trackers,
the CJLF’s compositional rules also indicate how to derive the image processing
variables of linked parts from one another (e.g., where the left headlight is if we
know the position and scale of the right headlight). The details of this derivation
are explicated for each of the rules in the next section. Finally, though we do not
use them for any of the examples in this chapter, the CJLF allows hard limits to be
placed on state variables such as a range of permissible angles or scales. This allows
further specificity in determining the form of p(Xy, ..., Xy).

For purposes of implementation, the Constrained Joint Likelihood Filter approach
alters the method of obtaining geometric image processing parameters detailed in
Chapter 4. Let each target ¢; have a measurement key K;. Previously the domain of

each function in K; was X;; we now extend it to the joint state space X7 This allows
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us to refer to the component measurement geometric parameters of any target t; to
define 1;’s component measurement geometric parameters. A caveat is that care
must be taken that there are no circularities in the definitions of the K; for the
various targets. Nonetheless, this constitutes a convenient and powerful mechanism
for enforcing constraints.

The effect of this reduction in the joint state space is to alter the Joint Likelihood
Filter so that it considers only those joint state samples which satisfy the constraints
exactly, allowing their joint probabilities to be computed normally. Sampling and
hill-climbing can then be used as in the previous chapter while still meeting the
conditions on the interrelationship of the parts. However, as with the JPDAF and
JLF, only one measurement is ultimately used to update the state. This is because
the weighted combination of measurements carried out by the PDAF filters can give

rise to states not satisfying the constraints.

6.1.1 Rigid link constraints

The simplest kind of constraint between measurements is a rigid link. By our defi-
nition, a rigid link between two objects t1, s implies that ¢5’s current geometric pa-
rameters are completely determined by their initial values and t;’s current values it
has no state or measurement space of its own to speak of. Its only function is to
contribute to the calculation of the joint image likelihood p(I | Xy, Xy). Therefore
to does not use a Kalman filter to estimate its own state; its purpose is as an ad-
junct that makes £; a more complex visual object. As an example, suppose that two
rigidly-linked objects are allowed to translate, scale, and rotate, and that the initial
offset between them scales as they do. This joint object configuration is diagrammed
in Figure 6.2(a). Then X; = (21, y1,51,¢1) and K; = (21,41, 511, 51h1, ¢1)", while

the geometric image processing parameters of ¢ are calculated directly from the
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Figure 6.2: Constraint types. (a) Initial configuration of a rigid link; (b) Initial
configuration of a hinge.

following:

T + 51(0; cos(¢r — ¢1) — ysin(¢r — é1))
y1 + s1(0zsin(¢r — ¢1) + 0, cos(1 — ¢1))
K, = S04 (6.1)

Slh,g

¢1+(5¢

where 8, = Zy — @1, 6, = Y2 — 1, and Jy = o — ¢1. It is convenient to represent the
rigid link transformation that takes the geometric parameters of object 7 to those of
object j as a function R, ;. Thus, Ky = Ry 5(K;).

It is straightforward to generalize a two-part, rigidly-constrained joint object to
a T-target system. 7' rigidly-linked parts can be modeled by treating them as 7' — 1
linked pairs, every one of which includes target ¢;, which has a state, measurement
space, and measurement key exactly like the first object in the example above. Then
for all 7 > 1, target ¢, has no state or measurement space, like the second object
in the example, and its measurement key K; is of the same form as that given in

Equation 6.1, except that the appropriate initial parameters z;, 3;, ¢;, w;, and h; are
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substituted where Z, 9o, o, W, and hy appear, respectively. Using the functional

notation, K; = Ry ;(K;).

6.1.2 Hinge constraints

A somewhat more complex constraint is a hinge (we avoid the more common term
“joint” because of its other connotations in this dissertation). A hinge is similar to
a rigid link but with an angular degree of freedom granted to the second object;
the axis of rotation is determined by the initial image location of the hinge: z, yj
(see the diagram in Figure 6.2(b)). Using the two-part joint object from above as
an example, if we allow the ensemble to translate, scale, and rotate freely and the
second part to rotate independently about the hinge, then the state of the first part
is again X, = (21,91, 51,¢1) and Ky = (21, y1, 51wy, s1hy, ¢1)7. However, the state
of the second part is now Xy = (¢3), where the angle represented by ¢, is relative

to the ray from (z1,y;) through the current hinge location (z,,ys). Following the

derivation for a rigid link,

Ty i T, + 31(6,;1 cos(¢py — 1) — 6,;“ sin(¢, — ¢1) (6.2

Yn y1 + s1(0,, sin(dr — ¢1) + Oy, cos(d1 — 1))
where (5,;1 = Ij, — T and 6,;“ = g, — 1. If the initial value of the hinge angle is ¢y,

the geometric parameters of the second object are:

wn + 5105, cos(da — ¢n) — 0 sin(da — ¢n))
yn + 5135, sin(o — dn) + 6 cos(da — ¢n))
K, = S1 W9 (6.3)
s1hy

¢1+¢2+5¢—<}3h
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where 6,'1';2 = Ty — T and 62;2 = 195 — yp. The hinge transformation between objects
i and j is denoted by H; ;.

We can also extend the mathematics of a single hinge constraint to a system
of multiple hinges. T parts connected in sequence by 7" — 1 hinges form what is
commonly called a chain [22]. Let C be a chain consisting of T" hinge-connected parts:
C = (t1,...,tr). We can specify the constraint on each part along C inductively: if
the first and second links t;, 5 are defined by the two-part system introduced above,
then the state of the ith part for i > 1 is X; = (¢;) and its measurement space
is Z; = ®. Given the measurement key K; of the first part ¢;, the measurement
key of the ith part ¢; is given by K; = H;_y ;(H;—2,-1(... Hi 2(K;) ...)). By writing
H; (K, 1), the calculations that lead to K; ; are assumed.

Chains can also branch. Suppose the first part ¢; in a chain which carries its
translational and scaling degrees of freedom is called the head, and the other parts
which only have an angular degree of freedom are called tails. One chain C, =
(tays---+tag,) can be attached to another Cy = (ty,, ..., %, ) at part ¢, along Cj’s

length by converting t,, to a tail and redefining C, as C, = (tp,, ..., tb;, tays-- -, t1,).

6.1.3 Depth constraints

Another useful kind of constraint is related to depth. When there is an expectation
that some subset of the objects being tracked will not occlude one another, we can
collect them into a depth group. Objects in the same depth group are not masked
against one another during computation of the joint image likelihood. When justified,
grouping objects in this way is more efficient because there are fewer depth orderings
to consider for each joint measurement.

An obvious situation to which depth groups apply occurs when tracking an object

with multiple attributes. Since attributes represent qualities of a physical object
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rather than the object itself, multiple instances can be “layered” onto a single object
without affecting the visibility of any of them. When a person’s face, for example, is
tracked by both a textured region tracker (to capture appearance) and a homogeneous
region tracker (for skin color), the two trackers are members of the same depth group.

Depth groups are also appropriate for parts linked by constraints under certain
viewing and motion conditions. Though these parts are spatially distinct, if they
are physically prevented from overlapping they can also be placed in the same depth
group. For example, consider a person’s arm viewed in profile as it moves parallel to
the image plane. Considering the upper arm and forearm as two parts tracked using
any modality, the joint limits of the elbow allow at most negligible overlap due to
depth, and thus we can ignore this interaction. The depth-independent interactions
between parts that are illustrated in Figure 5.7 still apply to parts in the same depth
group, however. When two parts abut each other, even if neither is occluded there
is still a change in the background along some portion of their perimeters and thus

a change in each part’s expectations about color contrast and edge-finding.

6.2 Results

Though a rigid link is a fairly simple constraint, it can be used to good effect, as the
first two examples demonstrate.

In Figure 6.3, we want to track a white pawn in a visual environment that contains
a similarly-colored object (a white rook) and a similarly-shaped one (a black pawn).
One obvious avenue is to try to track the pawn by color. We use a Joint Likelihood
Filter tracker consisting solely of a homogeneous region initialized as shown in frame

0 of Figure 6.3(d).! There is negligible scaling or rotation and movement is slow,

LA single-object JLF is not the same as a standard PDAF tracker because of the way match
values are used in the computation of the joint image likelihood p”(I|X”), but we use the JLF
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so we let the state be X = (z,y), making measurement space Z = X x Y. The
homogeneous region tracker selects the single most likely of 50 samples using a state
sampling covariance of ¥y = (% %) and improves it with Powell’s method.

This approach does not work, as illustrated in the frame sequence in Figure 6.3(d),
because the untracked white knight fits the color model well and attracts the pawn
strongly. The fundamental problem is the presence of a strong, persistent peak due
to the knight in the homogeneous region’s image likelihood, depicted at frame 0 in
Figure 6.3(a), that is not expected by the Joint Likelihood Filter tracker. If the
knight were also tracked, as was the case with the two-object example in Figure 5.10
from the previous chapter, then the Joint Likelihood Filter would prevent mistracking
caused by multiple peaks in the likelihood.

Tracking the pawn in a similar fashion with a snake alone yields better results:
the pawn is rarely mistracked, but there is some noise in the state estimation due to
transient distractions caused by pawn-like arrangements of edges, such as between
the fingers. This improved performance can be predicted from the image likelihood
for the snake pguue(1|X), represented as an image for I =frame 0 in Figure 6.3(b).
We can conveniently draw the likelihood as an image for this example because the
dimensions and limits of Z correspond exactly to the image width and height. The
intensity I(z,y) of each pixel of the likelihood image is drawn according to the
function I(z,y) = 255 * pspake(I| (,y)). The snake image likelihood has many more
maxima than that of the homogeneous region, but none are nearly as high as the
one corresponding to the snake. This quantifies our intuition that shape is a better
cue for this task than color.

Without knowing ahead of time which modality, if any, is sufficiently distinctive

for successful tracking, a prudent strategy is to use multiple attributes simultane-

here to make comparisons with the CJLF clearer.



115

ously. The conjunction of color and shape results in a joint image likelihood p’ (I|X7)
with peaks only where both likelihoods ppegion(I | X) and pypare(I | X) have peaks.
This often reduces distractions, as can be seen in the representation of p/(I|X”) in
Figure 6.3(c).

Formally, we can utilize the pawn’s color and shape simultaneously by modeling
the chess piece with two linked attributes a homogeneous region and a snake with
the constraint that the centers of the region and snake be coincident. Arbitrarily,
we let the homogeneous region tracker contain the state X; = (z7,y;), making its
measurement space Z = X x Y. Its measurement key is the same as that of the first
object in the rigid link example above, without scaling: K; = (1, y1, wy, hi, ¢1)7
The snake tracker has no state and an empty measurement space; its measurement

key is simple because the link has a length of 0: Ko = (z1— Ay, 1 — Ay, @2, @3, 1, G5) "
Both trackers are in the same depth group.

The pawn’s joint region-snake tracker follows the same regime of hill-climbing on
the single best of 50 samples as the single-attribute trackers above. As Figure 6.3
shows, this constrained formulation permits the pawn to be successfully tracked when
the homogeneous region alone fails. We have also observed that the estimated state
of the pawn is less erratic using conjoined trackers than is obtained by using the
snake tracker alone.

Another example of tracking with the CJLF is given in Figure 6.4. In the input
sequence, a person walks from the left side of the frame slightly toward the camera
and then in profile to the right. Suppose we want to track the person’s face as
a homogeneous region with a single-part Joint Likelihood Filter tracker. Let the
state be X = (z,y,,9,s) because the face translates relatively quickly and scales

gradually but significantly from the first frame to the last. Measurement space is

Z = X xY x S; the best single sample of 50 is improved using Powell’s method,
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0 20 100
(e) Two-attribute CJLF tracker

Figure 6.3: Multi-attribute Constrained Joint Likelihood Filter (MPEG). (a) payegion(I|X)
for homogeneous region; (b) pParegion(I|X) for snake; (c) p?(I| X”7) for both; (d) A homo-
geneous region JLF tracker is distracted by the white knight; (e) A CJLF homogeneous
region and snake tracker overcomes the distraction.
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5 0 0
where Xy = (050 0 ).
0 0 0.001

A sequence of frames from one run of this tracker is shown in Figure 6.4(c).
Because of a somewhat skin-colored brick wall in the background, poor lighting, and
a suboptimal skin color model, the discriminatory power of the face tracker is very
marginal. This can be seen in Figure 6.4(a), which shows the color similarity vface
of frame 0 to the face. The face tracker is distracted by a column of tan bricks in
the center of the image; when the person emerges on the other side of the bricks,
tracking has failed. This occurs for essentially the same reason as with the pawn
tracking example above: the bricks are unmodeled, very similar to the target, and
in close proximity to it for too many frames.

A tracker with the same filter parameters can track the red shirt through the same
sequence without any problems, however. Figure 6.4(b), depicting 744 for frame 0,
shows why the color of the shirt is a much more distinctive cue than the face’s color
in this visual environment. The shirt is not a different attribute of the face like shape
and color were for the pawn, but rather a different part of the person’s upper body.
This suggests that we can improve the face tracker’s performance by exploiting its
physical connection to the shirt with a two-part Constrained Joint Likelihood Filter
tracker.

We impose the constraint between the face and shirt as a rigid link that scales with
the two parts but does not rotate (since they do not). Letting the face tracker contain
the state Xy = (z1,y1, %1, 71, S1)) makes its measurement space Z; = X x Y x S.
The measurement key of the face tracker is K; = (21, y1, 51wy, s1hy, ¢1)%. The shirt
tracker has no state and an empty measurement space; its measurement key is Ky =
(21 + 5104, y1 + $10, S1W2, s1hy, ¢2)", where §, = 7, — 7, and 0y = Y2 — 1. The
trackers are put in the same depth group.

Figure 6.4(d) demonstrates that linking the shirt and face tracker together in
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) One-part JLF tracker

(d) Two-part CJLF tracker

Figure 6.4: Multi-part Constrained Joint Likelihood Filter: Resisting a distracting back-
ground (MPEG). (a) Face color match 7se; (b) Shirt color match i (c) One-part
Joint Likelihood Filter tracker on the face is distracted; (b) Two-part Constrained Joint
Likelihood Filter tracker on the face and shirt succeeds.
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this manner overcomes a distractingly face-colored background. The CJLF tracker
sometimes bobbles slightly as the face passes in front of the brick column because the
tracker briefly explores the possibility of not translating anymore and instead simply
expanding to including the bricks, the face, and the shirt. This part of measurement
space is quickly discarded, however, as the proportion of non-matches in the larger
area dilutes its fitness compared to the correct interpretation. Phenomena such as
these are another reason why pure gradient ascent tracking is not always workable:
when used here, the tracker gets stuck in a local maximum of state space that
corresponds to expanding ceaselessly and cannot jump to the better alternative as
random sampling does.

We should also note that the face tracker is not just “along for the ride” as the
shirt tracker smoothly proceeds. Though the shirt tracker may be the more valuable
partner, the joint image likelihood ensures that both components contribute to the
process equally (i.e., without regard to area, since mean match values are used).
Indeed, because the rigid constraint without rotation is necessarily an approximation,
the face often forces the joint state estimate to a compromise scale and position that
best includes both regions, rather than fitting the shirt region with precision and
deriving the face region estimate afterwards.

A more complicated situation which shows the advantage of the Constrained Joint
Likelihood Filter over the Joint Likelihood Filter is shown in Figure 6.5. Here we want
to track a person’s hand and forearm as homogeneous regions while they shake hands
with another person, who is not tracked. To account for quickly changing position
and angle, each component (i = 1,2) of the Joint Likelihood Filter tracker has a
state of the same form: X; = (z;, i, ¢i, Ti, Ui, ¢Z), making their measurement spaces
Z1 = Zy = X xY x ®. Accelerations during the handshake are too large for pure

gradient tracking, so each component tracker selects the best 1 of 50 samples, where
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the state sampling covariance is Xy = (580 520 o.%g)' This sample is then improved
using Powell’s method for gradient ascent on the joint image likelihood function.
The match threshold for the homogeneous regions here is T p,¢4i0n, = 2. Despite these
measures, the hand tracker mistracks when its target is in close proximity to the
other person’s hands (which are not being tracked) due to distraction. The forearm
tracker wanders up and down the sleeve because there is no reason for it to remain
fixed at one end.

These shortcomings can be eliminated by introducing the constraint that there is
a hinge (i.e., the wrist) joining the hand and forearm trackers to one another at the
midpoints of their abutting short sides. Formally, the state of the forearm tracker
remains Xy = (z1, y1, ¢1, 41, U1, ¢1) and its measurement space is also Z; = X xY x ®.
Its measurement key is the same as that of the first object in the hinge example
above, without scaling: K; = (21,41, w1, h1,¢1)7, and the sampling covariance is
also Xy, = (580 520 0_802 ). The hand tracker, however, has only one degree of freedom,
and its state is just X, = (qﬁg,@), reducing the measurement space to Z, = O.
Thus, the sampling covariance for the hand is ¥y, = (0.02). The hinge angle is
initially 0, the hand and forearm have the same initial orientation, and there is no

scaling, simplifying the form of the hand’s measurement key considerably compared

to Equation 6.3 to yield:

T — %wl COS(¢1) — %wg COS(¢1 + ¢2)

iy sin(n) — by sin(6 + )
. . (6.4)

ho
1+ 92

where the hand and forearm are also considered to be in the same depth group.
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Figure 6.5: Constrained joint likelihood: Using a hinge constraint at the wrist to prevent
mistracking during a handshake (MPEG). (a) Frame 0 of sequence of homogeneous region
trackers on hand and forearm; (b) A distracting situation: hand color similarity 7 at frame
260; (c) Running a Joint Likelihood Filter tracker for both parts, the hand tracker is
distracted by other person’s hand (frame 260); (¢) The Constrained Joint Likelihood Filter
formulation permits accurate tracking of the hand (frame 260).

Adopting this approach prevents the hand and forearm trackers from floating
apart; relatively higher joint image likelihoods keep the hinge at the sleeve-hand
border. The result is that during the period of ambiguity when the two hands are
clasped together, a realistic interpretation of the situation is maintained and tracking
proceeds correctly after the hands are fully separated.

Another task to which the CJLF is well suited is illustrated in Figure 6.6. In
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this case we want to track a person’s whole arm, from shoulder to fingertips, as they
raise their hand from a computer mouse to their face and lower it again. There is
articulation at the elbow and wrist, and the person’s face will not be tracked and is
therefore an unmodeled distractor. Since the person is wearing a short-sleeved shirt,
we divide the arm into four areas and assign each a tracker: the sleeve (i = 1), the
exposed skin of the upper arm (i = 2), the forearm (i = 3), and the hand (: = 4).
The wrinkles in the fabric of the sleeve provide good texture, so it will be tracked
by a textured region; the other areas are tracked by homogeneous regions. Since the
movement is nearly all in a plane parallel to the image plane, we neglect scaling and
focus on translation and rotation.

Using the JLF, the state of each tracker is X; = (mi,yi,¢i,ii,yi,q5i), making
each component’s measurement space Z;, = X x Y x ®. Powell’s method is used
for pure gradient ascent on the joint image likelihood, with the best of all visibility-
affecting depth orderings serving as the starting point for hill-climbing for each frame.
The initial arrangement of the trackers is shown in Figure 6.6(b), frame 0. This
method is able to follow the movement of the arm in a gross sense, but the degrees
of freedom of each tracker permit considerable shifting and rotational variability of
the homogeneous region trackers along the arm. In particular, the upper arm tracker
does not maintain the correct position and the hand tracker is severely distracted by
the similarly-colored face as they separate (see Figure 6.6(a)). The textured region
sleeve tracker performs well throughout the sequence.

The CJLF mitigates these problems to a large extent by exploiting the additional
information available about the connectivity of the different areas of the arm. These
constraints reduce the degrees of freedom of each tracker and effectively boost the
performance of marginal trackers by deriving their state information from better

performing trackers to which they are linked. Under the CJLF, only the state of
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the textured region sleeve tracker is unchanged: X; = (xl,y1,¢1,i1,yl,¢1). Its
measurement space is Z2; = X x Y x ®, and its measurement key is the same as that
of the forearm in the handshaking example: K; = (x1,y;,wy, hi,¢1)”7. The upper
arm tracker is rigidly linked to the sleeve tracker, so it has no state or measurement

space per se; its measurement key reflects the rigid constraint:

zy + beos(¢r) — (b + hy) sin(¢)

y1 + bsin(éy) + §(hy + hy) cos(¢n)
KZ - Wy (65)

h

b1

where b = 6 is an offset reflecting the fact that the sleeve hangs slightly below
the arm. A compressed expression for the upper arm measurement key is given by
K, = R 5(K,).

The forearm tracker is linked to the upper arm tracker via a hinge constraint
at the elbow, so its only free parameter is a relative angle. This makes its state
X3 = (¢3, ¢3) and measurement space Z3; = ®. The exact location of the hinge is
at the midpoints of the abutting ends of the upper arm and forearm rectangles; we
forego the geometric derivation and define the forearm tracker’s measurement key
as K3 = Hy3(Ky). Similarly, the hand is linked to the forearm by another hinge.
Its state is X4 = (¢4, ¢4) and its measurement space is Z; = ®. The wrist hinge is
located at the midpoints of the abutting ends of the forearm and hand rectangles,
making its measurement key K, = H; 4(K3)

The match threshold of the sleeve tracker is Y¢4i0n = 30 and for the homogeneous
regions it is Y ppegion = 2. All of the arm parts are in the same depth group because

of the viewing angle.
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As can be seen from Figure 6.6(c), the mixture of rigid and hinge constraints
between the four parts of the arm considerably improves tracking performance. The
parts maintain their relative positions and angles along the arm quite well, and
the untracked face causes no appreciable problems throughout its overlap with the

similarly-colored hand.
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(c) Constrained Joint Likelihood Filter

Figure 6.6: Tracking an arm in four sections (MPEG). (a) Face is distracting to hand
tracker (frame 130); (b) Frame sequence using JLF; (c¢) Frame sequence using CJLF.



Chapter 7

Related Work

In this chapter we discuss previous work on tracking and its relationship to the frame-
work presented in this dissertation. In the first section we cover other approaches to
tracking single objects, including the modalities used and the underlying state up-
date algorithms. The second section surveys other work on jointly tracking multiple
objects and how it differs from ours. Finally, we summarize previous research on
combining different modalities and adding constraints between trackers in order to

achieve more robust tracking.

7.1 Single Object Tracking

7.1.1 Modalities

The image cues color, texture, motion, shape, depth, and so on that have been
used for tracking are quite varied. Typically, a single attribute is used to discriminate
an object from the rest of the scene, making the selection of an identifying attribute
quite important in determining the performance of the tracker. In this section we

examine vision research related to color, texture, and shape as tracking modalities,
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as well as other currently popular and possible future cues.

Color

There have been numerous approaches to color representation for tracking and search.
Swain’s color histogram [114] is one popular method. The color components of the
pixels within an object are histogrammed; a histogram intersection can be computed
between this histogram and an area of the image to test the similarity of the two.
A useful feature of this algorithm is its ability to define an object as consisting of
multiple colors in certain proportions (e.g., % red and i blue). However, there is no
facility for specifying their relative geometric distributions (e.g., red above blue).

For example, Birchfield’s elliptical head tracker uses color histograms [11]. Color
space is a transformation of RG B space that encodes chrominance in two parameters
G — R and B — G of eight bins each and luminance in the third, R + G + B, with
four bins. The degree of match between the pixels in a postulated ellipse location
and the histogram model is given by the histogram intersection formula in [114].

In the same vein, Bradski tracks a person’s face in [19] with a window that is
translated and scaled to maximize the fit of the pixels it contains to the face color
model. This model is built by sampling skin-colored pixels and making a histogram
of their hues (the first component in HSV space); image pixels whose hues fall into
high-content bins are assigned proportionally high probabilities of being skin-colored.
Pixels with low intensities or saturations have very noisy hues, so these are ignored.

Fleck et al. explicate a search procedure that relies on color and geometry to
determine whether there are naked people in images in [42]. Skin-colored pixels are
segmented with ranges in hue and saturation values after a log-opponent transfor-
mation of RGB space adapted from [46]. Darrell et al. use a similar log-opponent

color representation for face tracking in [31].
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The Pfinder system [122] models parts of a person’s body such as their face, hands,
and shirt with 5-D Gaussian ellipsoids, or blobs: a 2-D image spatial component plus
a 3-D color component in YUV space. Each background pixel is modeled with a 3-D
Gaussian in YUV space. A special step attempts to detect whether part of a blob
is in shadow, and if so, the color components are normalized by intensity as follows:
Us=U/Y,V*=V/Y.

Similarly, [20] tracks blobs as Gaussian ellipsoids with a 2-D spatial component,
an optical flow component comprising either translation and rotation or affine motion,
and optionally a 2-D color component in HSV space.

Stauffer and Grimson [113] adaptively model individual background pixels with a
mixture of Gaussians in RGB or HSV space. They use a Gaussian not for modeling
the variation in color over the extent of an object, but rather its variation over time
at a single image location due to sampling noise. The Gaussian mixture accounts for
such phenomena as trees swaying, light glinting, monitors flickering, etc. that can

result in multiple contributions to a pixel’s color.

SSD

Early work on image correlation for tracking was reported in [1, 80]. Shi and Tomasi
refine this approach and describe a technique for finding textured image patches and
tracking their affine motion in [109]. There is considerable overlap between this SSD
work and the motion estimation research typified by [9].

Hager and Belhumeur exhibit a solution in [51] to the problem of SSD tracking
when there are variations in object pose and in the contrast, intensity, and the
direction of the light source. The method assumes that the surface of the object
being tracked is rigid, Lambertian, and that there is no self-shadowing.

A larger set of influences on image appearance are considered in [12]. Tmage
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change is explained as a mixture of causes such as motion (including non-rigid),
illumination variation, specularities, and iconic changes (object-specific occlusions
and material changes such as teeth appearing and disappearing as a person’s mouth
opens and closes). The EM algorithm is used to determine the contributions of the
various models. Results are only given for the three possible pairs of models that
include motion.

The active blob method of [106] defines an object model in terms of a deformable
3-D mesh to capture shape and a color texture map for its appearance. The object
may bend and twist as it moves, and global intensity and contrast variations are com-
pensated for. A Lorentzian influence function [14] replaces the standard quadratic
SSD error norm in order to achieve more robust tracking in the presence of outliers
caused by specularities and small occlusions. Robust statistics are also discussed
for SSD tracking in [51]. Though we have not adopted them here, robust statistical
formulations of the image likelihoods p(I | X) for all three of our modalities would

likely improve their tracking performance in certain circumstances.

Contours

An early formulation of the contour tracking problem is given by Kass et al. in [72]
using energy functionals. Under their definition, a snake is a spline whose shape is
determined by the sum of three forces: an internal force that governs the smoothness
of the curve, an external force that guides the initial placement of the snake, and
an image force that attracts the snake to edge and line features. Intensity and the
gradient are two quantities that contribute to the image force. The method is applied
primarily to fitting shapes in single images, but an example of lip tracking is also
given.

A somewhat different approach to snakes is taken by Blake et al. in [16, 18]. Their
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B-spline representation permits a detailed description of the curve’s shape, which
they call a template. However, only low-dimensional deformations of the template
(e.g., an affine transformation) are allowed to represent the evolving state of the curve
after initialization. The constraints on permissible shapes are derived for various
assumptions about the curve and its motion, such as planarity, in-plane motion,
etc. Reducing the size of the shape space avoids unconstrained movement of the
B-spline control points, which can often result in mistracking. With tuned priors
on object dynamics, this technique demonstrates robust, real-time tracking of fast-
moving hands and lips [17].

In the same spirit, an ellipse with a fixed aspect ratio serves as a shape model for
tracking a person’s head in [11]. The ellipse is allowed to rotate, scale, and translate
in order to maximize an edge match formula that favors a large gradient magnitude
at each point along the oval’s perimeter in conjunction with a gradient direction that
is also normal to the curve at that point.

A learned subspace model for contour tracking is presented in [26] and [8]. They
use principal components analysis (PCA) on a set of outlines of objects to compute
their range of motion and use this to parametrize the possible curve shapes during
tracking. This approach is applied to B-splines to track the silhouettes of walking

people in [8].

Other modalities

There are many other potential modalities suitable for use in tracking besides color,
appearance, and shape. In this section we review a few of the most frequently used.

Perhaps one of the most popular cues for tracking is motion. With a fixed camera,
simple differencing between successive frames is sufficient to localize motion and

hence serve as a basis for segmentation in the same way that we use ~ for color.
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The target may stop moving from time to time, though; one way around this is to
compare the current frame to a reference image without the target in it (i.e., the
background). Pfinder [122] computes a per-pixel background color model that is a
vital component in localizing the tracked person. Background models are also used
for person tracking in [103] and for person and car detection and tracking in [113].

Going further, one can also use optical flow to extract directional information.
Cutler and Turk [30] compute optical flow and segment it into blobs to classify
waving, clapping, flapping, and other motions of a person’s hands. When the camera
itself is in motion, more sophisticated techniques that compensate for egomotion
must be used. A possible precursor to motion-based tracking is an algorithm for
computing a layered representation of multiple motions in a scene, including that of
the background, given in [105]. Irani and Anandan describe a system along these
lines for detecting and tracking moving objects while moving in [58].

Stereo or other depth cues are another obvious candidate for use in tracking. A
stereo version of Pfinder correlates color blobs from two cameras for depth estimation
[3]. Darrell et al. segment faces by intensity from a disparity map computed by a
hardware stereo solution [31]. Specialized hardware such as Kanade’s machine for
computing a dense depth map at frame rate [70] and Konolige’s low-cost board for
obtaining a somewhat cruder depth estimate [77] have recently made this modality
much more practical.

Indeed, a frequent obstacle to adopting otherwise promising cues as tracking
modalities is the computational expense associated with them. Virtually any method
that segments an image into regions sharing some common visual property or searches
for matches in an image database could potentially be the basis of a tracking al-
gorithm. Though there are a number of diverse segmentation and edge detection

algorithms that yield excellent results, many take on the order of hours or more for
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each image, rendering them unusable for real-time tasks. Nonetheless, as these algo-
rithms are coded more efficiently or fast approximations are found for them, and as
computing power continues to increase geometrically, they could soon find their way

into a tracking framework such as ours.

7.1.2 Tracking methods

There are a few standard ways that modalities have typically been used for tracking.
Historically, a common method has been to define a modality-specific error function
that measures the degree of match between a hypothesized object state and the image
evidence and do gradient ascent or descent on it. A related but distinct approach is
to frame the tracked object parameters as the solution to a set of equations, leading
to another set of iterative methods for zero-finding. When the system of equations is
overconstrained, least-squares techniques are employed [94|. Many researchers have
found it advantageous to extend this basic approach with a Kalman or similar filter.
A Kalman filter smooths the state estimate in the face of noisy data and allows the
addition of dynamics (velocity, acceleration, etc.) to the state for better predictive
power. More recently, there has been considerable interest in the Condensation
algorithm [59], a randomized estimation procedure that exhibits good performance
when there is visual clutter that may distract a standard Kalman filter. In this section
we discuss these three tracking paradigms and their relationship to the framework
presented in this dissertation.

The interested reader is also referred to a number of other randomized opti-
mization methods such as simulated annealing [87], RANSAC [41], and the genetic
algorithm [47]. They might also prove adaptable to tracking, though thus far there

has been little work along these lines.
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Iterative algorithms

Kass et al.’s energy minimization method for contour tracking [72] is an example of
gradient ascent (or rather, descent) for tracking. For each new image, the energy
terms give rise to a system of equations that is solved using LU decomposition to
yield a new parametrization of the snake’s shape.

SSD [51] is an iterative method that assumes small motions between frames. This
allows a Taylor series approximation of the error norm ﬁ Zw’yeR(i(.r, y) — I(z,y))?
that leads to a system of linear equations. Solving this system yields the motion
parameters that take the pixels in region R from the reference image to the image I
that is best registered with the current image I. Other research on motion estimation
methods relying on image correlation (such as [9]) often incorporates a coarse-to-fine
image pyramid to handle larger motions and allows multiple iterations of gradient
ascent before convergence.

A robust error norm quantifies the degree of fit between the image and a warped
template for the active blob tracker in [106]. The Levenberg-Marquardt method [94]
is employed to compute the values of the deformation and photometric variables that
minimize this error. These new values become the tracker’s state in the next frame.

Bradski’s face tracker [19] and an early version of our color tracking work [95]
are based on pure gradient ascent. The similarity to a particular color of the pixels
within a rectangular tracking window centered at p; is measured; let the center of
mass of these pixels (weighting more similar pixels more heavily) be p,. If the image
distance |p; —p;| > € for some threshold €, p;;; is set to p; and the process is repeated
until convergence on the same image. Within the tracking window the moments of
the color similarity distribution are computed to estimate the area and angle of the

tracked object, optionally guiding the size of the tracking window.
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Birchfield’s head tracker [11] elaborates somewhat on this approach. The tracker
uses an ad-hoc scheme for velocity estimation, and within some constant size neigh-
borhood of the predicted head configuration (including location, scale, and orien-
tation) hypothesizes and tests possible head configurations. The highest-scoring
configuration in this neighborhood becomes the new state of the tracker.

For generality, we have chosen to use conjugate gradient or Powell’s method for
gradient ascent on the image likelihood and joint image likelihood. A modality-
specific analysis like that carried out in [51, 106] may yield a faster technique for
a particular objective function, but employing a common method for all modalities
makes adding new ones much easier, and we have found that only a modest number
of iterations of gradient ascent are usually sufficient to significantly improve a state

sample.

Kalman filtering

Pfinder [122] does not use a Kalman filter, but it updates each blob’s parameters by
blending the second-order statistics of the pixels matched to it with prior knowledge
and an approximate dynamical model. The procedure for doing this is not detailed.

Snakes are placed in a Kalman filtering framework in [117]. This allows dynamics
to be part of the state estimation process, as opposed to the purely gradient-driven
approach of [72]. However, the dynamics are chosen somewhat arbitrarily. The
snake-tracking systems described in [17, 18, 100], on the other hand, attempt to learn
sophisticated dynamical models of their targets’ motions from example sequences.
With such training the hand trackers in [17, 18] and lip tracker in [17] are able to
follow certain agile motions than untuned trackers cannot, as well as less susceptible
to mistracking due to background distractors.

In this dissertation we have not focused on building elaborate dynamical models
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because they are often quite target-specific—the dynamics of a hand waving do not
apply to a knee bending, etc. We assert, and the authors of [18] concede, that
this can restrict the ease of reuse and range of applicability of a tracking algorithm.
Rather, we have strived to create a framework that can handle multiple classes of
objects (cars, people, chess pieces, airplanes, etc.) undergoing a variety of motions.
Notwithstanding the simplicity of the dynamics we do use, we claim that the random
sampling method for measurement generation outlined in Chapter 4 yields robust
performance in the presence of quick accelerations and direction changes. Dealing
successfully with such phenomena is a large part of what tuned dynamical models
are designed to handle.

Another reason why we have not used detailed dynamical models is because we
wish to emphasize the data association aspect of the tracking problem. Though the
papers about them rarely say so explicitly, nearly all of the visual trackers based on
the Kalman filter use what is called the nearest-neighbor (NN) method for measure-
ment generation. This follows naturally from the use of gradient ascent to compute
a single measurement for each new image. As the discussion in Chapter 4 indicates,
this approach is only guaranteed to work when the objective function is unimodal. A
multimodal objective function, or image likelihood as we call it, violates the assump-
tions of such algorithms. The PDAF, JPDAF, and Joint Likelihood Filter (JLF),
conversely, acknowledge and deal with multimodality explicitly. Doing so obviates
much of the need for highly specific dynamical models which serve to define the
target more precisely and thus reduce the chance of distraction. Relying on well-
tuned dynamic models is actually similar in spirit to our strategy in Chapter 6 of
using conjunctions of attributes and constraints to define the tracked object more

distinctively.
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Condensation

The Condensation algorithm is a stochastic tracking technique that was introduced
in [59] (a more detailed exposition and further extensions are reported in [62, 60,
61, 63]). Its purpose is to facilitate tracking in situations where the image likelihood
is non-Gaussian or multimodal. Condensation was originally developed for snake
tracking; examples of objects tracked include a person’s head and shoulders, the
spread fingers of a hand against a cluttered desktop, and a leaf on a bush [60].
Recently, it has been applied to other problem areas such as mobile robot navigation
[34] and gesture recognition [13].

The way that the Condensation algorithm works is by approximating the poste-
rior probability of the state p(X|I) with a set of weighted samples using the factored
sampling algorithm of [49] (henceforth we subscript by ¢ to indicate time). At time
step t, let there be N samples sgi) with weights 7rt(i) such that Zf\;l 7rt(i) = 1. This
set of samples and their weights {(sgi), wfi))} is obtained from those of the previous
time step {(s”,, 7" )} via a stochastic dynamical model which makes a prediction
while increasing uncertainty, plus a measurement process which tends to reduce un-
certainty. The first step is one of selection: N samples are drawn with replacement
from {s{",}, choosing a particular s\, with probability (",. This means that some
samples may be chosen more than once, and some not at all. Secondly, the predic-
tive step, or drift, moves all chosen samples deterministically according to the current
estimate of velocity, acceleration, and the like. An increase in uncertainty in the ab-
sence of information is simulated by diffusion, which moves each sample randomly
and independently to its new position sgi). Finally, the measurement step assigns a

new weight to each sample by measuring all of their image likelihoods and normaliz-

ing: 7V = p(I; | X, = sgi))/ Z;.V:lp(It X, = ng)). The samples are initialized before
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tracking begins with a uniform distribution and equal weights.

If we think of the N samples as computational resources, the function of the
selection step becomes clearer. Its tendency is to redistribute these assets so that
they become sparser in less promising areas of state space, facilitating a more effi-
cient search. Over time, the normalization of the weights serves a winner-take-all
function by concentrating samples in the vicinity of the most likely state, while still
occasionally exploring less-likely regions of state space. If the target is becomes com-
pletely occluded or leaves the image, the samples diffuse through state space since
there is no measurement reinforcement causing them to congregate. Widening the
search in this manner is a good strategy for looking for the lost target to reinitialize
tracking. Condensation’s steady-state tracking and lost-target reacquisition make it
a robust algorithm for searching for the global maximum, or MAP state estimate, of
the time-varying distribution p(X|I).

In [59], the authors assert that a method such as Condensation is necessary
because Kalman filtering is inadequate for tracking in cluttered or distracting visual
environments. Though they do not say so explicitly, they seem to be referring to the
NN approach to measurement generation for snakes given in [117], which certainly is
vulnerable to clutter. An NN Kalman filter considers only one alternative to update
the state for each image. As we discussed in Chapter 4, this means that there is a
non-zero probability of choosing incorrectly, and with increasing background clutter
the chance of making a mistake only goes up. Mistakes can be recovered from,
but a succession of wrong choices usually causes mistracking. The Condensation
algorithm, on the other hand, effectively maintains multiple hypotheses over several
frames, letting the best one prove itself through continued reinforcement while the
probabilities of poorer hypotheses dwindle.

Because the sample set completely represents the tracker’s parameters at any
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given time step, Condensation does not explicitly maintain the state of the tracked
object as the Kalman filter does. Rather, the set of samples must be queried. The
suggested method is to define the weighted mean of the samples at time ¢ as the
current object “state” in the Kalman filter sense: X, = Zfil wgi)sgi). This works
well when the posterior density is roughly unimodal, but when there are multiple
strong peaks the samples can be divided fairly evenly between them, rendering this
“state” a meaningless compromise. The argument that Condensation is preferable
to straightforward Kalman filtering is predicated on the presence of multimodality,
leaving the would-be tracker’s ability to obtain a precise state estimate in doubt.
What is necessary, as the authors themselves point out in [59, 60], is a “mode finder”
that only averages within clusters of samples. They do not give a solution to the
problem, however.

The measurement generation algorithm we presented in Chapter 4, which com-
bines random sampling, gradient ascent, and enforcement of minimum separation,
is a kind of mode finder or clusterer (this is discussed in more detail below). By
solving the mode-finding problem at the front end of the filter cycle, we can use a
Kalman filter to achieve a similar level of tracking robustness. That the Condensa-
tion algorithm glosses over this important step is somewhat surprising: ”tracking” a
distribution is not very useful by itself.

As might be expected from the Kalman filtering framework that we use, our
approach to sample generation also differs from the Condensation version. We sample
only in the neighborhood of the target’s current predicted measurement, rather than
generating samples directly from previous good samples as Condensation does in the
selection step. This prevents the “cloud” of measurements associated with a target
from separating into multiple groups, thus enforcing the notion that a single target

is being tracked. Condensation’s observation step is its mechanism for preventing
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runaway dispersion of samples.

In sum, Condensation is an effective approach, but it does not discredit the
Kalman paradigm. The standard PDAF, by considering multiple measurements in
each frame, is considerably more robust than an NN filter in many situations; this has
been demonstrated in [5] and borne out in our own experiments. Furthermore, the
improvements we have made to the PDAF especially the combination of different
modalities for additional distinctiveness—result in a level of tracking performance

that matches that of Condensation for many difficult sequences.

7.2 Joint Tracking

The history of efforts to track multiple objects simultaneously has been relatively
brief, as multiple objects require proportionally more computational effort and the
difficulties of tracking single objects have been considerable enough to keep re-
searchers well-occupied. However, as processing power has increased and problems
in single-object tracking have become more thoroughly mapped, issues stemming
from the interactions between multiple objects are beginning to attract attention. In
this section we explore the foundations of the methods we use for JPDAF and JLF

tracking as well as related efforts with similar objectives.

7.2.1 JPDAF

The Joint Probabilistic Data Association Filter (JPDAF) was originally introduced
in [4] to deal with problems arising in the domain of tracking radar- and sonar-
based targets. Since then, the algorithm has been corrected and extended; we use
the version summarized in [5, 28] for our discussion and results. As we noted in

Chapter 5, the JPDAF is typically applied to non-visual sensors with point-like
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returns that obviate the measurement generation problem. There has been some work
on adapting the PDAF to measurements with areas, such as bright regions in low-
resolution infrared sequences, by computing connected components after thresholding
in [78]. An extension of the JPDAF to handle the problem of overlapping and
hence merged measurements in infrared images is given in [108]. However, this work
assumes that the intensity of the overlapping area is additive because the underlying
targets are exhaust plumes; we cannot make this assumption because we are tracking
opaque objects. Other applications of the JPDAF include tracking a fixed number
of visual features for structure-from-motion [24] and autonomous navigation from a
set of landmarks parametrized by range and bearing [37].

When the validation gates of a set of targets do not overlap, the JPDAF reduces
to several PDAFs. Since many standard tracking methods use gradient ascent or
some other iterative technique that assumes small motions, their effective validation
gates are relatively small and overlaps occur infrequently. Neglecting the general
superiority of PDA filters to NN filters in the presence of greater noise [5], this
makes the behavior of standard NN Kalman filters (such as [117] or Kalman filtering
on the output of an SSD matcher [51]) and the JPDAF similar in many visual
situations. However, overlaps tend to happen more frequently when validation gates
are expanded to handle higher tracking speeds, the number of objects being tracked
increases, or constraints on the targets (such as with parts of nonrigid or articulated
objects) encourage their proximity to one another. If these situations occur frequently
enough or last long enough, the performance of the NN approximation to the JPDAF
breaks down. By neglecting joint calculation of association probabilities, two targets
can “claim” the same image feature and their states may converge inappropriately.

Two other data association filters that elaborate on the PDAF and JPDAF are

the interacting multiple model filter (IMM) [6] and multiple hypothesis tracking
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(MHT) [99], respectively. IMM maintains multiple dynamical models for a single
tracked object and attempts to employ the one that best describes its behavior
at all times. MHT is similar to the JPDAF but provides a rigorous approach to
deciding when there is a new, trackable object and when to halt tracking of objects
that have left the image or been occluded for a long time. The basic idea behind the
initialization procedure is that measurements not associated with any current targets
(i.e., candidates for unknown targets) are correlated with each other from frame to
frame to see if any are continually found in the same vicinity. This strategy can be
effective, but the computational requirements of the MHT grow exponentially over
time. An efficient approximation of MHT is applied to the management of a large

set of appearing and disappearing features for motion estimation in [29].

7.2.2 Joint Likelihood Filter

When targets’ extents actually overlap or they are in close proximity, the JPDAF’s
combinatorial method of assortment becomes insufficient to avoid state convergence.
We introduced the Joint Likelihood Filter, a joint tracking algorithm that addresses
many of the JPDAF’s shortcomings, in Chapter 5. A few other researchers have
investigated similar approaches to tracking multiple interacting objects.

Rosales and Sclaroff, for example, track multiple crossing humans in [103]. They
assume a fixed camera for background modeling, allowing individual foreground ob-
jects to be segmented as connected blobs. Occlusions are predicted and the system
goes into a different mode during them, using pre-occlusion velocity estimates to
correctly label blobs after separation. If the targets reverse direction while they are
overlapping, the system can mistrack.

Stauffer and Grimson perform tracking of people, cars, and other moving objects

from cameras mounted high above campus plazas and street intersections as part
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of a surveillance and activity categorization project [113]. They also use a per-pixel
background model to identify large, connected foreground regions as putative objects.
An ad-hoc, JPDAF-like method associates foreground objects with a pool of Kalman
filters that are currently tracking them; further heuristics are used to decide when
to spawn or kill a tracker in the manner of MHT (though neither JPDAF nor MHT
is cited). According to the authors, the tracker has the most trouble in situations
where objects overlap one another. One reason for this may be the low-resolution of
most targets, as the camera has a fairly wide-angle lens and is mounted hundreds of
feet away.

Beymer and Konolige track multiple people with stereo and SSD in [10]. They
expect a person to be standing and viewed frontally or from behind, so a scalable,
narrow rectangle is used to represent their size and location. To track, a foreground
disparity map is first created by subtracting the background (a fixed camera is as-
sumed). For the tracked person closest to the camera, the foreground disparity
map is thresholded to isolate the layer around their predicted depth. An intensity
template is correlated with the image and adjusted by matching a binary person
template to the disparity map layer. A Kalman filter updates the tracker’s state
and the area of the foreground disparity map corresponding to the person’s binary
template is removed. The process is repeated for the next farthest-away person, and
so on. When the number of pixels are left in the disparity map layer that overlap
the binary template get too low, a person is considered completely occluded and its
tracker is removed. New people are searched for by correlating scaled binary tem-
plates with the depth layers extracted from the decimated foreground disparity map.
One problem with the tracking system is that it tends to delete and create person
trackers instead of maintaining continuity when there are temporary full occlusions.

A somewhat more sophisticated approach is introduced in [76]. Their system
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tracks passing cars from a camera mounted on a highway overpass by fitting contours
to contiguous regions of motion. Occasionally, one car follows another closely enough
or changes lanes in such a way that a partial occlusion occurs. Without special logic
to deal with this eventuality, the contour fitter becomes confused. The relative
geometry of the fixed camera and the road, however, allows the system to deduce
that the car whose bottom edge is lowest in the image is closer to the camera. The
occluded part of the more distant car is “masked” out of the contour-fitting operation,
yielding better tracking accuracy during the period of overlap.

Another system which is described in [98] tracks the fingers of a human hand
with SSD templates as they bend and block one another. By matching a detailed 3-D
model to the image, the depth ordering of the palm, thumb, and digits is derived and
occlusions between them are predicted. Those portions of the templates predicted to
be invisible are “windowed” out of the SSD calculations, a method similar to what
we do in the computation of the component image likelihood for textured regions in
Equation 5.5.

The essential idea of the three preceding approaches is to mask out the occluded
part of an object in order to prevent the state estimator assigned to it from claiming
image information generated by the occluding object. In each case, predictions are
made about which targets are occluded and which should be visible. This type of
information sharing about visibility between trackers is characteristic of the Joint
Likelihood Filter. However, all of the other techniques that do this use a three-
dimensional state configuration to inform the visibility analysis, whereas the JLF
infers a depth ordering strictly from the image information. This gives the JLF
tracker the flexibility to handle more visual situations and target types because
camera movement is not restricted and separate objects that do not constrain one

another (as opposed to connected finger joints) can be tracked.
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Most similar to the Joint Likelihood Filter is the work of MacCormick and Blake
in [81]. Their system tracks multiple wireframe and opaque contours using a vari-
ant of Condensation. They append the object depths to the joint state and impose
transition rules that make changes in the visibility ordering improbable while the ob-
jects overlap. This is more efficient than considering all permutations of overlapping
targets as we do, but it may slow the transition from erroneous initial orderings to
correct ones.

Among these joint trackers, only [10] uses multiple modalities (stereo and SSD)
to help discriminate between objects. We examine other research on tracking objects

with more than one attribute in a later section.

7.2.3 Measurement generation

The measurement generation steps of both the single-object and joint tracking cycles,
as detailed in Chapters 4 and 5, bear a resemblance to clustering methods described
elsewhere. Recall that for the ith of T independently-tracked targets, the PDAF
procedure is to sample N; locations in the measurement space Z; of each target, hill-
climb some fraction of them with the conjugate gradient algorithm, and eliminate
less-fit samples within a small neighborhood of more-fit ones. This winnowing process
leaves n; measurements; each represents one peak in the image likelihood p;(I | X).
The measurements can be regarded as exemplars of clusters of samples in the same
basins of attraction of p;(I | X) (the rest of which were removed in the minimum
separation phase).

For T identical, jointly-tracked targets, the JPDAF procedure is the same except
that there is only one common group of N samples narrowed to one pool of n mea-
surements based on a single image likelihood p(I|X). The Joint Likelihood Filter is

in some sense a higher-dimensional version of PDAF: it samples N locations in joint
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state space X7 and clusters them into n joint measurements by hill-climbing. (We
treat the use of only the best joint event or joint measurement for JPDAF and JLF,
respectively, as a step that comes after measurement generation rather than being
integral to it).

At this point an obvious question is: Why use our method instead of running a
standard grouping algorithm on the samples before doing gradient ascent? For exam-
ple, one common clustering method for a known number of clusters is the K-means
algorithm [53, 82]. Given n data points D = {p1,..., P, }, the algorithm is initialized
by choosing k initial cluster centroids C = {c, ..., ¢}, often as random members of
D. An iteration of the algorithm consists of two parts: first, the ¢th data point is
assigned to the nearest cluster j such that the Euclidean distance between the point
and the cluster centroid || p;,c; || is minimal. Second, the location of each cluster
centroid is updated as the mean of all data points belonging to that cluster. These
two steps are repeated until no data points switch memberships between clusters.
The K-means algorithm is not optimal and sensitive to the initial cluster centroid
locations. Therefore, a criterion for the “goodness-of-fit” of a clustering that favors
low within-cluster variance and high between-cluster variance is often used to select
the best classification after several repetitions of the algorithm with different random
seeds. Examples of the K-means algorithm’s use in vision include [30, 113].

We do not use K-means in the measurement generation process for a number
of reasons. First, our gradient ascent step is still necessary as its primary purpose
is to improve the samples and provide consistency in their locations to balance the
randomness of their initial locations. Without it, state estimates would have an ele-
ment of noise related to the sampling covariance ¥y and the number of samples N.
Granting the utility of gradient ascent, we do not need a general clustering algorithm

because of the assumption that hill-climbing brings the members of each cluster suf-
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ficiently close together. This is what makes the enforcement of minimum separation
a valid grouping technique. Furthermore, K-means assumes a known number of
clusters, but under our assumptions we only know that the ezpected number of clus-
ters/measurements is T—some variation from image to image must be permitted.
Finally, K-means forms clusters exclusively on the basis of proximity in the data
space, which is measurement space or joint measurement space. The clusters should
be based on the underlying structure of the image likelihood function, though, in
the sense that samples in the same basin of attraction are grouped together. There
is generally a correlation between samples that are close in measurement space and
samples in the same basin of attraction, but these basins are not necessarily spherical
as K-means would have them be.

Another clustering algorithm often used in vision is Expectation-Maximization
(EM) [36, 84]. EM is a general algorithm for computing ML and MAP estimates
with incomplete data. A special case of estimation with incomplete data is mixture
models, or estimation with data that is generated by multiple processes. Assuming
that there are k models and n pieces of data, EM simultaneously solves a classification
problem and a parameter estimation problem. It does this by alternating between
assigning each piece of data to the processes that best explain it (the expectation
step) and changing the parameters of the models to reflect the data membership (the
maximization step). Membership may be soft, so that a piece of data can belong
to multiple models and exert weight on their parameters proportional to the degree
of its membership, or it may be hard, meaning that a data point can only belong
to one model at a time. K-means can be regarded as an approximation to the EM
approach to mixture models in which the models are the means and covariances of
spherical ellipsoids and label assignment is hard.

Bregler uses EM to label pixels as belonging to one of £ coherent motion-color
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blobs in [20]; the output of EM becomes a measurement in a Kalman tracking fil-
ter. EM is also used to learn a dynamical model for hand tracking in [90] and for
motion estimation in [2, 64, 121]. An extension is made to EM in [121] to try to
estimate the number of models; the minimum description length (MDL) principle
from information theory is used in [2] to select an appropriate number of models.
EM could probably be adapted for use in the measurement generation generation
process, but the fit is not perfect. Typically, the data points that are clustered in
other vision applications are image pixels rather than the measurements that we work
with. Without completely reworking the tracking framework, a more appropriate use
of EM might be to run separate instances of it to obtain a few measurements or joint
measurements and use these as inputs to PDAF or the JLF. As far as we know,
EM has not been applied to snake tracking; doing so would likely require a different
formulation than the region-based applications described above. One advantage
of the approach that we have taken to measurement generation is its generality:
once a image likelihood and minimum separation distances A for novel parameters
have been defined for a new modality, our clustering method works without further
modification. Lastly, as with K-means, EM cannot estimate the number of clusters

by itself.

7.3 Constraints

Constraints have been used in tracking in many forms and by many researchers to
improve performance. The notion of eliminating unnecessary degrees of freedom
and taking advantage of relationships between nearby pixels, edges, and higher-level
visual units is so basic that SSD and snake methods, for example, are often viewed

as fundamental trackers rather than constrained systems of individual pixels and
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short edge segments, respectively. Nonetheless, constraint methods have continued
to develop for targets beyond simple, rigid objects, and a major motivation for this
push seems to have been the complexity of the human body. In this section we
review previous work on incorporating constraints into motion-based, edge-based,
and other kinds of trackers of complicated, articulated objects such as people and
their faces, hands, and other body parts. Another, more recent, branch of research
on constraints has focused on exploiting multiple target attributes simultaneously for
additional robustness. We also survey these efforts. Finally, we briefly discuss earlier

work of ours on extending the JPDAF to implement constraints probabilistically.

7.3.1 Multi-part tracking

Much of the previous work on tracking complex objects has not explicitly tackled
the data association issue. One line of primarily motion-based tracking work, which
is discussed in more detail below, has avoided the association or correspondence
problem entirely through a differential approach. Many of these efforts have more
of a flavor of pure estimation, rather than the simultaneous problem of estimation
and label assignment with which this dissertation has been concerned. Here the
data association problem is subsumed into the well-known correspondence problem
in optical flow [54]. For example, Yamamoto and Koshikawa [124] track in-plane
articulated movements of a human arm by relating arm motion to image change via
the Jacobian and solving the brightness equation using least-squares. Basu et al.
[7] use a similar technique to recover 3-D head motion parameters by regularizing
optical flow.

Another line of tracking research has dealt with data association, but somewhat
implicitly by using some form of nearest-neighbor association. Examples include

Kalman snakes [117], [18], the edge-based arm tracking of Goncalves et al. [48],
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and many feature trackers used as input to motion estimation or structure from
motion algorithms (examples are given in [29]). Typically, such tracking systems
must manage a number of small image processing windows or validation gates (e.g.,
snake segments) within which multiple candidate features (e.g., edge fragments) may
be detected. Correspondences are established by selecting the nearest neighbor to
each predicted measurement. By stacking many measurements into a large vector
and keeping the state relatively small, the measurement equation of the Kalman
filter becomes overconstrained. The redundancy of multiple measurements tends to
outweigh the influence on the overall object state of any individual part-measurement
misassociations due to the NN method.

The many researchers who have investigated human body tracking, either in
whole or in part, have encountered a few common design choices stemming from
constraints. One major decision is whether to model the target kinematically or
dynamically [123, 102]. A kinematic model simply specifies the connectivity between
and range of motion of an object’s parts, while a dynamic model also considers the
influence of external forces such as gravity and the ground as well as internal forces
operating at joints and points of connection. As mentioned previously, our focus
on data association has led us to deemphasize dynamics, which a number of other
researchers have also neglected [65, 98, 102]. Moreover, we have found a simple
kinematic constraint model sufficient for a broad range of tracking tasks. Efficient
mathematical representations for kinematic chain constraints, which are essentially
what we use in Chapter 6, are given in [22, 65].

Regarding the actual enforcement of constraints, vision researchers have typi-
cally chosen from two methods: first, allowing separate parts to have full, possibly
conflicting states and using Lagrange multipliers or a similar technique to reconcile

between them [68, 123]; and second, giving the parts the minimal degrees of freedom
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and deriving their parameters recursively along a chain [22, 65].

Finally, articulated-object trackers can be roughly divided into those that at-
tempt to use or recover full 3-D information, those that are only interested in 2-D
information (and therefore might assume no occlusions or out-of-plane motions),
and those that compute what we call “2.5-D” information. A 2.5-D representation
is something like a 3-D representation, but without exact depth estimates. Instead,
the scene is approximated as a set of 2-D layers for which the depth order is known.
This has been our approach in Chapters 5 and 6.

One example of a 3-D tracker is the work of Bregler and Malik on tracking
articulated human motions using a kinematic chain for a linear representation of
joint constraints between coherent motion-color blobs [21, 22]. A constrained form
of the brightness equation is solved using Newton-Raphson minimization. To aid in
segmentation, a background model is used. Results show that the torso, arms, legs,
feet, and head can be tracked during walking from frontal, side, and three-quarters
views under normal imaging conditions. Because the method is differential, it can
have difficulties with quick movements.

Pentland and Horowitz demonstrate full-body tracking in [92] using a method
similar to [124]. Optical flow calculation is constrained by a 3-D model consisting
of rigid cylinder-like shapes joined by springs. The Kalman-filtered state estimate
is the result of cumulative optical flow and thus is subject to a build-up of error,
limiting the length of accurate tracking.

Jojic et al. track the torso, arms, and hands of a person with a 3-D kinematic
chain using a dense stereo disparity map in [65]. In addition to the body part trackers,
the system maintains a background depth model. The tracker can handle prolonged
self-occlusion. Wren and Pentland [123] track a person’s face and hands with color

blobs (similarly to [122]) using a virtual work formulation to enforce constraints
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on an articulated upper-body model. Temporary occlusions are handled, and the
constraints prevent mistracking when another person’s hand is interposed.

Gavrila and Davis [45] do whole-body tracking using four calibrated cameras
mounted on a geodesic dome surrounding the subject. A 3-D, 22 degree of freedom
(DOF) model of a person consisting of linked superquadrics corresponding to the
head, torso, arms, and legs is used to predict the location of edges in the four images;
pose space is searched for the best overall match. Subjects must wear skintight,
contrasting clothing to assist edge detection, and edges with no history of motion are
considered part of the background and removed before matching. Up to two people
can move and interact fairly freely inside the dome without difficulty. Processing is
done offline; no data on processing speed is given.

Rehg and Kanade present the DigitEyes system for 3-D hand and finger tracking
in [98]. A 28 DOF kinematic chain model represents the palm and all five digits.
A visibility ordering of the digits is generated from the state in order to predict
occlusions, guiding SSD matching. Tracking is based on gradient descent on the error
function. A distinction between this approach and the Joint Likelihood Filter, as we
noted in the previous section, is that DigitEyes infers occlusion from the state rather
than the image. This works well for predicting self-occlusions when tracking a single,
articulated object, but it is not applicable to the occlusions that may occur when
tracking multiple objects that are not connected to one another, such as two people.
Occlusions in these kinds of situations can, however, sometimes be derived from
stereo or camera calibration information as [10] and [76], respectively, demonstrate.
It is likely that a combination of state-based occlusion prediction and image-based
occlusion deduction would yield still better results.

Morris and Rehg [88] do whole-body tracking with a 2-D scaled prismatic model

(SPD) that largely eliminates the singularity problems of 3-D kinematic models. The
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authors assert that the articulated tracking problem can be divided into two steps:
a registration phase in which the model is fitted to the image, and a reconstruction
phase in which 3-D parameters are recovered. They argue that the latter phase is
not always necessary, such as for gesture recognition, and can always use the output
of the first phase in batch form. In the SPD, joint angles are all in the image plane
and links change length for out-of-plane rotations. There is no occlusion handling.

A cardboard person model for tracking 2-D articulated human motions with con-
nected quadrilateral patches is presented in [66]. The brightness equation for optical
flow is augmented to incorporate the articulation constraints and solved directly us-
ing a robust estimation technique. A three-level coarse-to-fine pyramid is used to
cope with relatively large motions. Examples given are of tracking the thigh and calf
of the foreground leg during walking motions parallel, orthogonal, and at 45 degrees
to the image plane. Large motions from frame to frame can cause the gradient ascent
method to mistrack, and occlusions are not handled.

Pfinder [122] maintains a background model and classifies foreground pixels as
belonging to one of seven body part blobs (face, hands, feet, shirt, and pants) based
on a combination of color similarity and spatial proximity to the blob center. A mor-
phological growing operation is used to ensure connectivity within blobs. Occlusions
are handled as all-or-nothing blob “disappearances,” and the system can bootstrap
itself onto a person entering the image. Multiple people in the scene can confuse
tracking.

Kakadiaris et al. describe an algorithm for tracking in-plane, articulated arm and
finger motions as it deduces the number of rigid parts in [68]. The edges of the arm or
finger are found against a contrasting background, and initially a single deformable,
physics-based model is fitted to them. When the model bends far enough, the fitting

error and discontinuity in the edge curvature derivatives trigger a decision to split the
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model into two parts connected by a joint. Fuzzy clustering is used to share points
in the border zone between parts. A Kalman filtering framework helps mitigate the
effect of spurious edges introduced by partial occlusions.

Rohr models a person as a set of connected cylinders with elliptic cross sections in
[102]. Medical data was used to obtain a one-variable phase angle parametrization
of the internal configuration (joint angles and limb positions) of the model for a
walking motion parallel to the image; the horizontal image position of the body
centroid is estimated separately. Assuming a fixed, calibrated camera, a Kalman
filter predicts the location of straight edges in the image and computes the degree
of match. Analogous to our argument against a too-specific dynamical model, the
kinematic model here is overspecialized. This tracker cannot handle anything but
one person walking in profile at a constant velocity.

Reynard et al. investigate coupling frontal mouth and head snake trackers in [100]
as a method for preventing mistracking of the mouth during lateral head movements.
Without the coupling, the mouth tracker depends primarily on vertical edges at the
top and bottom of the lips and therefore suffers from the aperture problem during
horizontal motions. When linked with the mouth in a combined Kalman tracker,
however, the strong horizontal edges on the sides of the head silhouette compensate

for this vulnerability and allow a full range of motion.

7.3.2 Multi-attribute tracking

Investigations into exploiting multiple different modalities for tracking have become
more common in the past few years. This can be ascribed in part to the additional
computational overhead entailed by combining methods, and partially to the ten-
dency of some researchers to continue refining the single-modality techniques with

which they are most familiar. Even those systems that do rely on different modalities
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rarely use them at the same time. Most often, a set of heuristics arbitrates between
which modality to employ or favor at any given time.

Darrell et al. combine stereo, color, and a face detection module to track frontal
views of multiple people’s faces and upper torsos in [31]. No Kalman filter is used;
the state of each person is updated using a nearest neighbor approach after iden-
tifying candidate person locations. Candidate locations are found by running each
of the three modules separately to find good range profiles, skin color, and face
matches, respectively. These separate candidates are ranked, with preference given
in decreasing order to face matches, overlapping range and color candidates, range
candidates, and color candidates. This is in contrast to the Constrained Joint Likeli-
hood Filter outlined in the previous chapter, which always looks for conjunctions of
the attributes it is using and does not favor one over another. The system does not
recognize the occurrence of occlusions per se, but rather waits for people to separate
before using the face detector to reclassify them.

Birchfield uses color and intensity gradients for head tracking [11]. The color and
edge match criteria are described above; to compare these two sources of information
at a common scale, the two independent match formulae are converted into percent-
ages by dividing by their range of possible values. The effect of this step is similar to
the function of oyregion, Thregion; and Ognare in the component image likelihoods given
by Equations 5.4, 5.6, and 5.8, respectively.

Other examples of multi-attribute tracking include Bregler’s inclusion of both
color and motion parameters in a multivariable Gaussian representing a blob [20].
This implicitly handles the differences in scale between the two quantities. Mae et
al. use optical flow plus contours found by edge detection to improve tracking in
ambiguous visual situations [83], and Pfinder [122] combines the output of the color

blob segmenter with a contour analysis step in a heuristic way.
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Perseus, a vision system mounted on a mobile robot, computes multiple feature
maps (color, motion, and disparity) to figure out where a person is pointing [67].
When the robot is not moving, background subtraction is used to finding the person;
when it is moving, stereo disparity is used (after eliminating pixels with of known
floor color or bright enough to be ceiling lights). A geometric analysis is then used to
determine where the arm is; arm-finding fails if the hand is not away from the body.
The different cues are not used simultaneously, but rather in sequence depending on
certain conditions.

The Incremental Focus of Attention (IFA) algorithm [118; 119] is a system of de-
cision criteria for switching between coarse-to-fine tracking methods (motion, color,
SSD) in order to maximize accuracy and recover quickly and robustly from mistrack-

ing. Again, the different methods are used sequentially rather than simultaneously.

7.3.3 Constrained Joint Probabilistic Data Association Fil-

ter

In previous research [96, 97|, we augmented the JPDAF to include a method of
enforcing constraints probabilistically, which we called the Constrained Joint Prob-
abilistic Data Association Filter (CJPDAF). The CJPDAF works by quantifying
how well the relationships between measurements fit the desired constraints between
their associated targets. Introducing constraints into the state update process at this
point affects the computation of the association probabilities, which are determined
in Equation 5.1. By encoding a probabilistic preference for certain part arrange-
ments, the effect is to favor those interpretations of the data that best fit the model
rather than force the target state into fitting it (which is what the Constrained Joint

Likelihood Filter (CJLF) does). The only examples of constraints used in [96, 97] are
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rigid links with no rotation or scaling, but a functional definition of the inter-part
constraints in [97] allows for more complicated relationships. The CJPDAF is often a
useful, flexible way to introduce constraints into a multi-part tracking system, but by
not imposing them until after the measurement generation step, there is a possibility
that the independently-generated measurements cannot be arranged in a joint event
that closely satisfies the constraints. By jointly generating measurements that meet
the constraints from the very beginning of the process, however, the CJLF proves to

be much more robust.



Chapter 8

Conclusion

This dissertation’s primary contribution is its demonstration of the importance of rea-
soning about correspondences between trackers and image data in order to achieve
robust vision-based tracking. In arguing that standard estimation techniques are
often inadequate for real-world tracking tasks, we have catalogued a number of dis-
ruptive visual phenomena such as agile motions, occlusions, and distractions that
make tracking difficult and presented a series of new methods to counteract them.
One innovation of this work is the analogy we have drawn between visual occlu-
sions and distractions and the problem of no or multiple measurements that algo-
rithms such as the Probabilistic Data Association Filter (PDAF) and Joint Proba-
bilistic Data Association Filter (JPDAF) [5] were intended to solve. Though these
filters were originally developed for discrete radar and sonar tracking applications,
we were able to successfully adapt them to visual tasks by defining measurements
suitably and devising a preprocessing step to extract them. Run head-to-head on the
same image sequences, the vision-based tracking algorithms thus created exhibited
markedly better performance in the presence of clutter and when tracking multiple

identical objects than many current commonly-used methods.
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Our technique for generating the measurements used as input to these data as-
sociation filters is also notable. We have found that a combination of random sam-
pling and gradient ascent for extracting a discrete set of high-likelihood hypotheses
about characteristics of the target’s image projection consistently yielded accurate
results. The identification and consideration of a group of alternative hypotheses
in the neighborhood of the tracking filter’s prediction allowed ambiguities to be re-
solved over multiple frames and helped to quickly relocate the target when it moved
with agility. This procedure is also general enough that it can be applied to any new
tracking modality defined in the manner of the examples in Chapter 3.

We have also explicated shortcomings in the JPDAF and remedied them with
a more efficient and sophisticated method, the Joint Likelihood Filter (JLF). By
relating the exclusion principle at the heart of the JPDAF to the method of masking
out image data [76, 98], the JLF handles occlusions between tracked objects. Our
extension of this method to collections of objects of different modalities such as color,
shape, and appearance is original. The approach we take to color representation and
region geometry for homogeneous regions is our own. Moreover, though others have
used three-dimensional state parameters to assist with occlusion reasoning, the JLF’s
inference of the depth ordering of tracked objects during overlaps from image data
alone is novel.

Finally, we augmented the JLF method to allow low-level trackers to be composed
via part and attribute constraints in order to specify more complex targets. This algo-
rithm, the Constrained Joint Likelihood Filter (CJLF), reduces the vulnerability of a
vision-based tracker to unmodeled distractions and occlusions by effectively defining
its target more distinctively. Although geometric constraints are a well-established
method for increasing robustness, exploiting multiple modalities simultaneously to

track a single object—especially three, as we do—is fairly new, and the union of
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these two approaches is clearly an advance. The way that the CJLF framework does
so is made more useful by its flexibility and extensibility: target models can be easily
specified and new modalities can be added straightforwardly.

The main claim that we make about these new algorithms is that they offer qual-
itative improvements in tracking performance over existing methods when the visual
disruptions we enumerated are present in an image sequence. That is, by modeling
distractions and occlusions as we do, we add a novel capability that standard tech-
niques lack and allow tracking to proceed successfully where it otherwise it is prone
to fail. Such a claim is distinct from one of simple quantitative superiority, which,
for example, might assert that the expected error between state estimates and the
ground truth is smaller for one algorithm than another. The latter claim follows
from the first, in a sense, but here we have focused on the inability of standard al-
gorithms to cope with certain phenomena as an obstacle to their more widespread
applicability.

We took several approaches in this dissertation to demonstrating the efficacy of
our tracking methods. First and foremost, we have argued through hypothetical ex-
amples and derivations that, for example, not carrying out the measurement process
jointly and/or exploiting constraints between trackers when they apply leads to an
incorrect formulation of the posterior probability on the state given the images ob-
served. Correspondingly, we have sought to show how the JPDAF and JLF address
the first problem through the image likelihood and how the CJLF addresses the sec-
ond through the prior on the state. These probabilistic arguments demonstrate why
the visual disruptions classified constitute significant violations of the assumptions
of standard tracking techniques.

We also buttressed this theoretical approach with empirical evidence obtained

from tracking experiments on real image sequences. By attempting to track in vari-
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ous situations with standard techniques, we confirmed the detrimental consequences
of visual disruptions. Noise, interactions between multiple tracked objects, and in-
sufficient constraints between linked parts frequently led to mistracking as predicted.
Conversely, when an appropriate new algorithm was employed, the incidence of mis-
tracking was greatly reduced. The figures that make up the bulk of the data discussed
in each chapter’s results section were selected as representative of many head-to-head
runs. Repetitions were performed both to gauge the consistency of the results for mi-
nor parameter variations and to give a better statistical picture when the algorithms
had a stochastic component. In several cases, we have summarized the results of a
batch of runs by the fraction in which the object was successfully tracked. The wide
disparities in performance quantified in those examples are characteristic of what we
observed over the entire corpus of experiments, but regrettably we did not do the
same precise tabulation for all of them.

The way that we chose the image sequences in this dissertation points up a
general difficulty with comparing tracking methods. While we strived to include
sequences that had different kinds of objects, motions (both of the object and the
camera), and backgrounds in order to put a range of stresses on the various algorithms
and modalities, there is still a question of how representative the sequences are.
Addressing this issue is more straightforward when the problem domain of the tracker
is known and limited, but we have tried to keep our framework general. What is
really called for is in some sense a basis set of sequences. The theory behind what
would go into such a set is still embryonic, however, and the tracking community
has yet to even achieve consensus on any common set of sequences suitable for
comparison. Moreover, when using real-world video clips it is hard to control enough
of the visual variables to support a claim that the success or failure of tracking is

due to one particular factor. This difficulty is compounded by the fact that where
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good sequences are available, it is often laborious if not impossible to extract ground
truth from them. Synthetic sequences along the lines of what we used in Figure 4.8
would seem to remedy this problem, but whether photorealism is necessary and how
applicable results obtained on synthetic sequences are to real-world situations are
issues that demand more study.

In the following section, we will discuss some other questions that have arisen in

the course of this research which we plan to investigate further.

8.1 Future work

There are a few major directions which we see as promising for improving and ex-

tending the work presented here.

Additional modalities An obvious next step in our research is to implement more
tracking modalities within the framework described for single objects in Chapter 3
and joint objects in Chapter 5. Additional descriptive attributes would further in-
crease the distinctiveness of any tracked object, boosting the reliability of tracking
in more difficult visual situations. Moreover, when limited processing power does
not allow the use of all available modalities, careful selection of the most useful ones
at hand is necessary. A larger set of methods with complementary strengths and
weaknesses would afford better coverage in situations where the object’s color, ap-
pearance, or shape alone are difficult to discern due to lighting, resolution, or other
limitations.

A number of well-studied candidate modalities such as motion and stereo are
reviewed in Section 7.1.1. Some other novel tracking cues also seem worthy of inves-

tigation. For example, one interesting cue is texture in a statistical sense. Suppose
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that we would like to recognize and track an object covered with vertical stripes,
wavy lines, spots, or some other repetitive pattern. Defining a texture procedurally
or parametrically as opposed to the static reference image of a textured region would
make for a more concise, view-insensitive object description. Moreover, classes of
objects (e.g, zebras) instead of only single instances (e.g., this zebra) could be char-
acterized, and single-instance tracking would likely be more robust. Zhu et al. do
texture modeling by picking a basis set of filters using information theory [126] and
Efros and Leung [39] synthesize textures from a sample using a non-parametric tech-
nique. A corollary of such results which might lead to a quite versatile and powerful
tracker is a more complex texture comparison function than simply subtracting the
intensities of corresponding pixels. However, these texture modeling methods are

currently too computationally intensive to be feasible for tracking.

Modality comparison A natural question to ask about cues concerns their ef-
ficacy. Thus far we (and many other researchers, it seems) have relied solely on
intuition and empirical observation to guide the choice of which tracking modality
works best for a given image feature. Furthermore, our use of MPEGs for input has
given us the luxury of concluding (as have others e.g., [31]) that more modalities
are always more helpful. With a large group of cues available and a real-time task
that places hard limits on computational resources, however, it becomes paramount
to have a rigorous technique for selecting one best cue or a minimal subset of cues
that satisfy the task’s requirements efficiently. What is necessary is a decision crite-
rion that accounts for the characteristics of the target being tracked and the image
conditions at any given time and makes a reasoned choice about the superiority of
a textured region vs. a homogeneous region vs. a snake vs. any other modality.

As a corollary, we would like to be able to predict when tracking human faces, for
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example, how much of a performance improvement would be gained by augmenting
a homogeneous region with a textured region instead of, say, adding a snake. Such
inquiries are essentially concerned with quantifying distinctiveness.

One possible basis for a theory of comparing tracking modalities is some sort of
measure for our confidence that the estimate returned by the tracker is a good one.
Confidence in an estimate may stem from a number of factors, but a very important
one is how much better (in a probabilistic sense) it is than the alternatives. How
much does the estimate stand out as the solution rather than a solution? If we view
the visual cues as akin to channels carrying messages of varying helpfulness about the
value of the state X, information theory provides a principled approach to quantifying
these intuitive qualities. In particular, Fisher information [27] is promising as a
bridge between information theory and estimation. The Fisher information J is a
lower bound on the variance of an unbiased estimator of a set of parameters of a
probability density. Here the parameters are contained in X, the probability density
p(X | I) is conditioned on the current image I, and the estimator is one of the
candidate tracking methods. As a yardstick for an estimate’s repeatability, J, for
a particular modality A can be regarded as a maximum confidence measure in that
modality’s tracker for a given set of state parameters and image conditions. This
makes it relevant for comparing the relative effectiveness of various tracking methods.

There has been some previous work on the theory of visual cue integration using
Fisher information and other information theoretic approaches. Yuille and Bulthoff
[125] develop a theory about fusing binocular stereo and monocular depth cues for
motion parallax, as well as shape from shading and texture. Blake et al. [15] use the
compression and density of texture elements on a surface as cues for estimating its tilt
and slant in computer-generated images, analyzing the usefulness of each according

to its Fisher information. However, there has been no research to date on employing
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Fisher information to select and integrate cues specifically for tracking, so this might

be a fruitful avenue.

Tracker initialization and termination Another area which deserves more at-
tention is the initiation and termination of tracking. Currently, a user points and
clicks with a mouse to set a tracker’s initial state parameters—e.g., by choosing lo-
cations along a snake’s contour or indicating a region’s image position, angle, width,
and height. The user then presses a button to start tracking, which continues until
the end of the MPEG is reached or the program is killed. There are several reasons
why it would be beneficial to have tracking begin and end without user intervention.
The first is convenience. The commencement of tracking can be easily automated
with script files for MPEGs, but repeatedly picking the face to be tracked in a live
image sequence, for example, is tiresome. A higher-level process that looks every-
where for faces and starts tracking in locations with good matches would obviate
this chore. A second reason is that tracked objects sometimes leave the frame or
are completely occluded for long stretches of time. Recognizing such absences would
prevent erroneous state estimates from being promulgated, and refinding lost objects
to resume tracking would allow a tracker to run for longer periods and recover from
clutter for which this dissertation’s methods are insufficient. Such skills have been
termed post-failure robustness [118]. Lastly, an ability to discover image features
that match the target model but have not been pointed out by the user could also
identify persistent distractors. As a result, distractors could be treated as trackable
objects in their own right and dealt with using the JPDAF or Joint Likelihood in-
stead of approximating them as noise or minimizing their occurrence with additional
modalities.

The high-level search process posited for initiating a tracker assumes the exis-
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tence of a detailed model of the sought object’s color, appearance, or shape in order
to test hypotheses. A major difference between such a search and the tracking mea-
surement process detailed in Chapter 4 is the markedly greater breadth and hence
computational load required for initialization. The prior on the state p(X) is consid-
erably more diffuse because there is no prediction from the previous frame to narrow
the focus. Close fits to the object model must be subjected to a thresholding step
to decide whether to actually start a new tracker. As for termination, a separate
module would monitor the health of existing trackers in order to determine when
they no longer have sufficient image corroboration to continue.

The Condensation algorithm [59] starts tracking with a spread-out prior and con-
tinually shifts resources away from less likely areas of state space to more promising
ones, so in a sense automatic initialization and termination are built in. Neverthe-
less, the same failure to make a discrete decision about how many targets are being
tracked which we referred to in Section 7.1.2 also means that there is no definite
decision as to whether a new target has appeared or an old one is gone. In con-
trast, multiple hypothesis filtering [5, 28|, which we covered in Section 7.2.1, is a
data association technique similar to the JPDAF that is very explicit about these
events. [t automatically detects new targets and eliminates obsolete targets with a
sophisticated methodology that takes several frames to make a decision. However,
it is quite expensive computationally and seems to have only been applied in vision
to fixed-size, SSD-type features [29].

The expense of the broad search necessary for automatic initialization is only
compounded by the high-dimensional states resulting from the kinematic constraints
introduced in Chapter 6. The strategy of Gavrila and Davis in [45] is one interesting
approach to improving efficiency. They search pose space hierarchically for body

parts: first the torso, then the arms, then the legs. Their intuition is that the torso
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is easier to locate because it varies less in position and orientation, and can then
“anchor” the search for attached limbs. This is somewhat similar to the partitioned
sampling technique used by MacCormick and Blake in [81] to reduce the number
of samples needed for Condensation tracking of objects or groups of objects with
high-dimensional states. The basic idea of searching for object parts in descending
order of distinctiveness would likely boost the performance of ordinary tracking as
well.

A problem closely related to automatic initialization is how to find features worth
modeling and tracking in the first place. This version has arisen in structure-from-
motion problems [29] and surveillance tasks [103, 113]. In this case there is no
specific representation of the target per se (like a reference image of a face or a skin
color model), but rather only an idea of an ideal target’s properties. The chief such
property used by researchers is sometimes called “trackability,” a virtual synonym
for distinctiveness. Shi and Tomasi establish strong vertical and horizontal gradients
as a trackability criterion for SSD features in [109]; motion-sensitive trackers usually
look for a compact, connected group of strongly-changing pixels [103, 113]. Fisher
information is used in [115] to derive a goodness measure similar to that of [109] by
searching for fixed-size regions that maximize J. A procedure such as this might be

generalizable to other modalities.

Model learning It would also be advantageous to ultimately incorporate learning
into our tracking framework. Learning affords an opportunity to accurately tune
object dynamics and build more refined models of appearance, color, kinematics,
and so on. The trained snake trackers in [18, 100], for example, obviously react
better than their untrained counterparts to agile motions. Improving a tracker’s skills

continuously through an online version of their learning algorithm would be ideal.
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Another benefit of learning is that rough models entered by hand can be augmented
or corrected over time, and long-term modifications to the tracked object such as
beard growth or changes in clothing can be accommodated adaptively. The system
in [68] initially models a human arm as a single, flexible object until it observes a
large enough bend to deduce that there are actually two parts (the forearm and upper
arm) joined at the elbow. An elaboration of this kind of approach might be able to
first approximate a whole human body as a single rectangle and gradually parse out
the structure of the torso, limbs, and head, avoiding the explicit spelling-out of the

kinematic chain that must currently be done.

Code optimization A final consideration for future work is a technological one:
the implementation of the tracking algorithms described in this dissertation could
likely be sped up greatly with a concerted effort to optimize code. We have not
been concerned as much with maximizing speed as with improving general tracking
performance, and this is reflected in the running times of our algorithms, which
range from near real-time (defined as tracking calculations keeping pace with a 30
frames-per-second stream of 640 x 480 images) to seconds per frame on a 650 MHz
Pentium III. Nonetheless, besides facilitating more efficient testing and comparison
of methods, a reliably real-time implementation is a prerequisite to any real-world
application of the full spectrum of our methods.

Speed depends on a number of factors, most importantly the number and type of
atomic trackers, iterations of gradient ascent allowed, and number of state samples
explored. Profiling the code shows, unsurprisingly, that a major portion of its time
is spent doing image processing in repeated evaluations of p(I|X) for different state
samples. Using the SIMD capabilities offered by the MMX component of the Pentium

1T chip, which we do not, would cut down per-frame computation time a great deal.
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For example, benchmarks for the Intel Image Processing Library (IPL) [57] indicate
as much as a 500% improvement going from non-SIMD to SIMD versions of common
image operations such as convolution, zoom, and addition.

Another intriguing possibility is suggested by the work on active blob tracking
in [106]. They use the specialized 3-D hardware of an OpenGL graphics card to
quickly synthesize expected images of a deformable tracked object from its state.
This ability would be a great help to us in performing, for example, the affine warp
with bilinear interpolation on the reference image I that is part of the image likeli-
hood for textured regions. The recent OpenGL 1.2 specification [110] includes some
image processing functions akin to those in the Intel IPL, making it likely that 3-D
graphics cards will soon provide even more hardware that can be exploited for track-
ing. Moreover, our use of MPEGs instead of live input in order to facilitate exact
comparisons causes some performance degradation due to the extra load on the CPU
of software MPEG decoding. Most current graphics cards can do this decoding in

hardware.

8.2 Coda

A guiding motivation throughout this thesis has been that distractions, occlusions,
and sudden movements pose a major challenge to the reliability of vision-based track-
ing for both people and machines.

How do people cope? The basic neurobiology of tracking consists of eye (and
ultimately head) motions aimed at keeping the image projection of the object of
interest on the fovea, the high-acuity center of the retina that subtends about 1° of
the visual field [71]. Smooth pursuit movements of both eyes, which follow targets

at moderate speeds, are punctuated by quick saccadic movements. Saccades “catch
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up” when target motion is too fast or discontinuous and also serve to shift attention
to interesting stimuli in the periphery of the visual field. Perceptions of large objects
such as human faces that do not fit within the fovea seem to be constructed from
repeated saccades between smaller areas of interest [71].

A comprehensive theory of how the visual system makes attentional choices and
acts upon them is, of course, still nascent. Nonetheless, these findings agree with
the intuition that as we track a complex object such as another human being, a
constant series of adjustments must be made to where we are looking and what we
are looking for in order to compensate for unpredictable motions, disappearances, and
ambiguities. Consider the friend-in-a-crowd scenario alluded to in the first chapter.
To follow our friend we can try to fixate on their face, but the similarity of the
surrounding faces may prompt quick, continual scans of the vicinity to insure that
there have been no mix-ups. If this is too confusing, we might attend to our friend’s
hair color as long as it is distinctive enough. When the friend’s head is blocked, our
attention shifts to their still-visible shirt. If they are entirely obscured, we anticipate
their reemergence at some predicted spot or simply search that area of the image
until they are refound. The sum total of this patchwork of strategies is the human
ability to maintain visual contact with a target despite many severe disruptions.

Although we make no claims that our methods are in any way consonant with
the mechanisms of the human visual system, we have drawn inspiration from them.
Responding to the problems detailed above, this dissertation has taken the view that
unless traditional estimation techniques are bolstered with explicit reasoning about
these phenomena, tracking performance in many real-world situations inevitably suf-
fers. The philosophical touchstone of our work has been that robustness can be in-
creased by exploiting multiple sources of information simultaneously. This approach

is manifested in many innovative aspects of our framework: e.g., individual trackers
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avoid commitment to a single attractive feature to defend against noise, groups of
trackers share information about correspondence choices to avoid interfering with
one another, and diverse geometric and qualitative cues are integrated to increase
distinctiveness. The value of these methods is demonstrated by their superior track-
ing performance on many objects in the presence of difficult clutter and partial

occlusions.
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